Please use this identifier to cite or link to this item:
https://ri.ujat.mx/handle/200.500.12107/4880
Title: | Índice de Conley y sistemas Hamiltonianos |
metadata.dc.creator: | Zapata Gómez, Yesenia |
metadata.dc.creator.id: | 182A21001 |
Abstract: | La teoría de las ecuaciones diferenciales es una de las ramas antiguas de las matemáticas, su estudio se remonta a los tiempos de la creación del cálculo diferencial, justo en los tiempos de Isaac Newton y Gottfried Leibniz. Por otro lado, la topología algebraica es otra rama de las matemáticas que surge a finales del siglo XIX y principios del siglo XX, principalmente impulsada por Henry Potincare. En este trabajo se pretende ver como ambas ´áreas de las matemáticas pueden interactuar, mediante una aplicación de la teoría de la homología, específicamente del índice de Conley, a sistemas Hamiltonianos. Nos enfocaremos a los sistemas dinámicos continuos, en particular en flujos asociados a sistemas de ecuaciones diferenciales ordinarias, en dichos sistemas, vamos a analizar bajo que condiciones existen soluciones contenidas (para todo tiempo positivo) en regiones no necesariamente invariantes. Con este fin, iniciaremos este estudio en el capítulo 1, donde abordaremos conceptos preliminares sobre dinámica continua y resultados básicos de topología. |
Issue Date: | 1-Mar-2021 |
metadata.dc.rights.license: | http://creativecommons.org/licenses/by-nc/4.0 |
URI: | https://ri.ujat.mx/handle/200.500.12107/4880 |
metadata.dc.language.iso: | spa |
Appears in Collections: | Maestría en Ciencias Matemáticas (PNPC) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Yesenia Zapata Gómez.pdf | 3,52 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.