Pruebas de hipótesis para la matriz de covarianza poblacional de datos de dimensión alta

dc.contributor.roleanalistaes
dc.contributor.rolefouranalistaes
dc.contributor.roleoneanalistaes
dc.contributor.rolethreeanalistaes
dc.contributor.roletwoanalistaes
dc.creatorCortez Elizalde, Didier
dc.creator.id172A15003es
dc.date.accessioned2024-10-14T18:02:25Z
dc.date.available2024-10-14T18:02:25Z
dc.date.issued2020-03-01
dc.description.abstractLos datos multivariados de dimensión mayor o igual al tamaño de la muestra (datos de dimensión alta) aparecen en diversos campos, algunos de ellos son genética, análisis funcional, finanzas, análisis de imágenes médicas, climatología, reconocimiento de texto, entre otros (ver [9]). Cabe mencionar que en el contexto de datos de dimensión alta la estimación de la matriz de covarianza poblacional no es un problema fácil, ya que se tienen que estimar muchos parámetros con pocos datos, por lo que la estimación de esta matriz y pruebas de hipótesis acerca de ella requieren técnicas estadísticas diferentes a las del caso clásico donde el tamaño de la muestra es mucho mayor que la dimensión de los datos. Consideremos X1, X2, . . . , XN un conjunto de vectores aleatorios independientes de la distribución normal multivariada Nd(µ, Σ), donde la media µ y la matriz de covarianza Σ son desconocidas, y estamos interesados en probar H0 : Σ = Ip vs H1 : Σ 6= Ip, (1) o H0 : Σ = λIp vs H1 : Σ 6= λIp, (2) donde λ es desconocida. La hipótesis nula H0 de (2) es llamada hip´otesis de esfe ricidad. En [1] y [13] es demostrado que la prueba de razón de verosimilitud para contrastar las hipótesis en (2) se basa en el estadístico de elipticidad dado por V = det(S) [tr(S)/p] p , (3) donde S es la matriz de covarianza muestral de los datos. En el caso en que p ≥ N (caso de dimensión alta), con probabilidad uno, S no es de rango completo y consecuentemente det(S) = 0. Esto indica que la prueba de razón de verosimilitud para (2) solo existe cuando p < N (caso clásico). Debido a lo anterior, ha habido mucho interés en proponer y analizar pruebas de esfericidad en el contexto de datos normales de dimensión alta.es
dc.identifier.urihttps://ri.ujat.mx/handle/200.500.12107/4888
dc.language.isospaes
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.licensehttp://creativecommons.org/licenses/by-nc/4.0es
dc.subject.ctiinfo:eu-repo/classification/cti/1es
dc.subject.keywordsPruebas de hipótesis para la matriz de covarianza poblacional de datos de dimensión altaes
dc.titlePruebas de hipótesis para la matriz de covarianza poblacional de datos de dimensión altaes
dc.typeinfo:eu-repo/semantics/masterThesises
dc.type.versioninfo:eu-repo/semantics/draftes

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Didier Cortez Elizalde.pdf
Tamaño:
2.15 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.4 KB
Formato:
Item-specific license agreed to upon submission
Descripción: