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Abstract

HIS thesis describes the application of the differential evolution algorithm to induce oblique and axis-
parallel decision trees. The differential evolution algorithm distinguishes itself by being a simple and
straightforward metaheuristic thatthas been successfully applied to efficiently solve a large number of prob-
lems whose parameters are real-valued ydriables, producing better results than those obtained by other ap-
proaches. Even though the differential evolution algorithm has already been utilized in data mining tasks, its
use to induce decision trees is reduced to onedpproach to building oblique trees in a global search approach.
The differential evolution algorithm is applied in this thesis to induce decision trees through two strate-
gies: by its use inside a traditional recursive partition scheme, and by utilizing it to conduct a global search
in the space of possible trees. In the first.€ase, this metaheuristic searches for the most appropriate hyper-
plane coefficients to better split a set 0f Araining instances, optimizing some splitting criterion. With this
scheme, the differential evolution algorithim is applied as many times as internal nodes are required to build
the oblique decision tree. On the other hand, ‘this evolutionary algorithm carries out a global search of one
near-optimal decision tree. Each individual in.the.population@ncodes only the internal nodes of a complete
binary decision tree stored in a fixed-length real-valued vectof. The size of this vector is determined using
both the number of attributes and the number of clags labels ofthestraining set whose model is induced. To
obtain a feasible decision tree, first the vector is analyzedito build apartial tree with only internal nodes, and
then the training set is used to insert the corresponding-léaf nodes.

Two types of decision trees can be obtained using the global search'strategy: oblique and axis-parallel
decision trees. Using the differential evolution algorithm to find neatzoptimal hyperplanes of an oblique
decision tree is very intuitive since the hyperplane coefficients values are takenfrom a continuous space, and
this metaheuristic was devised to optimize real-valued vectors. However, the construction of axis-parallel
decision trees encoded with real-valued vectors is a more complicated task due te-each of its internal nodes
uses only one attribute to split the training instances. In this thesis, one procedureo select each attribute of
each test condition of this type of decision tree is introduced. In this procedure, a niapping scheme using the
smallest-position-value rule and the training instances to build a feasible axis-parallel deci$ion tree from one
individual in the population is successfully applied. Once the evolutionary process reaches its'stop condition,
the ba individual in the final population is refined to replace non-optimal leaf nodes with.sub-trees, as well
as it is pruned to reduce the possible overfitting generated by applying this reﬁnemenw procedure
allows inducing feasible decision trees with a different number of nodes, although they are represented using
a fixed-length parameters vector. )

To obtain reliable estimates of the predictive performance of the two strategies implemented in this thesis,
and to compare their results with those achieved by other classification methods, a repeated strat tﬂgn—
fold cross-validation procedure is applied in the experimental study. Since the evolutionary process to fi

a near-optimal decision tree uses the training accuracy of each tree as its fitness value, the decision treﬁ
the last population could be overtrained, and the tree with the best training accuracy in this population could
show a worse predictive ability. In this thesis, with the aim of mitigating the effects of this overtraining, an

il
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alternative s€hente to select one decision tree from the population of trained trees is introduced. nxis scheme
uses a subset of dnstances of the dataset, which are not utilized in the cross-validation process, to determine
an independen‘ﬂtgugacy for each decision tree in the final population and to select the best one with this new
value. This new accuracy is referred in this thesis as the selection accuracy, so the tree with the best selection
accuracy in the ﬁnﬁbﬁ);ulation is used to calculate the test accuracy of the fold.

Finally, a statistical analysis of these results suggests that our approach is better as a decision tree induc-
tion method as compared®with other supervised learning methods. Also, our results are comparable to those
obtained with other robust/classifiers such as Random Forest, and one multilayer-perceptron-based classifier.
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Chapter 1

Introduction

All data has its beauty, but not everyone sees it

Damian Mingle

NOWLEDGE discovery refers to the process of non-trivial extraction of potentially useful and previ-
Kously unknown information from a dataset [123]. Within the stages of this process, data mining stands
out since it allows analyzing the data and/preducing medels for their representation. In particular, machine
learning provides data mining with usefulprocedures to build these models, since many of the techniques
aimed at information discovery are based on‘inductive l¢arning. Decision trees, artificial neural networks,
and support vector machines, as well as clustering methods, have been widely-used to build predictive mod-
els. The use of one particular machine learning technique tosbuild a model from a specific set of training
instances depends on the required level of interpretability, scalability, and robustness of the model produced.
The ability to track and evaluate every step in the‘infermation extraction process is one of the most cru-

1 factors for relying on the models gained from datasmining methiods [338]. In particular, decision trees
are classification models characterized by their high levels of interpretability and robustness. Knowledge
learned via a decision tree is understandable due to its graphical representation [169], and also decision trees
can handle noise or data with missing values and to make correct predictions [26

A decision tree is a hierarchical structure composed of a set of internal and leaf nodes. Each internal
node evaluates a test condition consisting cm combination of one or more attdbutes of the dataset, and
each leaf node has a class label. Each tree branch represents a sequence of d%s made by the model
to determine the class membership of a new unclassified instance. Of the different,types of decision trees
described in the literature, both axis-parallel and oblique decision trees have aroused the interest of the
researchers in the machine learning community. An axis-parallel decision tree evaluates single attribute in
each test condition, and oblique decision trees utilize a linear combination of attributes to.split the instance
space. Oblique decision trees commonly show better performance, and they are more epmpact than the
axis-parallel decision trees, but they require more computational effort to induce them.

The performance and expressiveness of a decision tree depend both on the quality of the training in-
stances used to build the model, and on its induction procedure. In the first case, appropriate_ s ling
methods must be applied to obtain a set of instances as representative as possible of the problem: the
other hand, the use of an adequate partition criterion, the capacity to deal with continuous and multi-yalued
attributes, and the ability to handle with missing values, among other elements, define the relevance of an
induction procedure. Since one or more induction procedures can be applied to the same training instances,
several decision trees are consistent with these instances [257]. In practice, a decision maker prefers accu-
rate and compact predictive models: accurate as they correctly describe the dataset from which they were
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induced and’haye a reduced generalization error, and compact because they have a small number of alterna-
tives. Since €ach’leaf node of a decision tree represents a possible sequence of decisions made by the user to
determine the €lass membership of a new unclassified instance, decision trees are considered compact when
having a reduced number of leaf nodes. The compactness of the tree can also be evaluated by the length of
its branches, i. e. the'size of the sequence of decisions made to classify one new unclassified instance.

Although is known' that one greedy criterion does not guarantee to find an optimal solution [147],
decision trees are ordinarily y constructed through a recursive partition strategy that searches an optimal local
split of the training set at éachistage of their induction process. On the other hand, algorithms implementing
a global search strategy ar€ eapable of finding near-optimal decision trees, but they are computationally
expensive [14], and a way ot"b!ﬁag with this disadvantage is the use of metaheuristics such as evolutionary
algorithms and swarm intelligencemethods.

1.1 Motivation

Notwithstanding a considerable number of-heuristic algorithms and classification approaches have been de-
scribed in the existing literature, as well as thestraditional decision tree induction algorithms such as C4.5
[303], CART [46], and OC]1 [260] are faster ‘and accurate, this thesis describes one differential-evolution-
based approach to induce decision trees. This wark-1s motived by the fact that metaheuristics can perform a
global search in the space of classifications models contrary to the constructive approach of the traditional
methods [125], and also that the differential’evolution‘algorithm has demonstrated to be a very competitive
and successful method to solve complex problems in comparison with other algorithms [70,86,281,371]. In
particular, since metaheuristics use intelligent search progeduses combining their exploration and exploita-
tion skills, thus providing a better way to discover the reldtionships between the attributes of the training
set, their application to build classification models allows creating decision trees more compact and accurate
than those induced with traditional methods.

It is important to point out that to locate near-optimal decisionstrees, the encoding scheme used by a
metaheuristic to build decision trees must correctly represent their'symbolic elements: test conditions and
class labels. The representation schemes of several metaheuristics such as _genetic algorithms, and genetic
programming are capable of encoding these elements, and they have been gommonly applied to induce deci-
sion trees. However, this is a challenge for other metaheuristics such as the"differential evolution algorithm
and the particle swarm optimization method, which have proven to be very efficient in solving complex prob-

s, but they have been designed to handle real-valued representations. The differential evolution algorithm
has been applied for solving optimization problems arising in several domains of §cience and engineering in-
cluding economics, medicine, biotechnology, manufacturing and production, big data &nd data mining [288].
In data mining, it has been utilized to build models of Essification [218], clustering [78].\and rule gener-
ation [83]. Also, the differential evolution algorithm has been used in conjunction With artificial neural
networks [218], support vector machines [221], Bayesian classifiers [141], instanoe—bas@s;iﬁers [138]
and decision trees [362] for the induction of classifiers.

Since the differential evolution algorithm is one of the most powerful metaheuristics to solve teal-valued
optimization problems, we apply it to build both oblique and axis-parallel decision trees. In the first ease, as
the task of finding a near-optimal oblique hyperplane with real-valued coefficients is an optimization Q lem
in a continuous space, a recursive partitioning strategy to find the most suitable oblique hyperplane é)ch
internal node of a decision tree is implemented in this thesis. In this strategy, the differential evol @l
algorithm replaces the standard splitting criterion. Furthermore, to take advantage of carrying out a global
search with one metaheuristic, this thesis also proposes an approach in which the set of hyperplanes used as
test conditions of one complete oblique decision tree are encoded in a real-valued vector, and the differential
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evolution algorithm evolves a population of oblique decision trees. On the other case, a scheme to represent
an axis-parallel decision tree with a real-valued vector is also introduced in this thesis. Each individual
in the populatiefi'encodes the elements of one univariate test condition: 1) the categorical and numerical
attributes, and 2) the threshold values associated with the numerical attributes. Thefferen[ial evolution
algorithm carries out a‘global search of a near-optimal axis-parallel decision tree. An advantage of this
global search approach'is'that the differential evolution operators can be applied without any modification,
and the individuals in the foiulation represent only feasible decision trees.

1.2 Research objectives
The general objective of this thesis is the follows:

To apply the differential evolution algorithm to build more compact and accurate oblique and axis-
parallel decision trees than those Obtaiped using other decision tree induction methods.

To achieve this objective an exhaustive analysis of the literature related to the application of metaheuristic-
based approaches to induce decision trees is first developed. Four specific objectives were formulated for
this dissertation, and they are listed below:

1. To find the coefficients of a near-optimal hyperplane which splits a set of training instances.

2. To define one procedure to estimate the'size of onefeal-valued vector encoding the internal nodes of a
complete decision tree, based on the characteristics‘ot the dataset whose model is constructed.

3. To define one procedure to map a feasible decision tree'from one real-valued vector.

4. To find a near-optimal decision tree through ong' glabal seateh in the space of the decision trees.

1.3 Hypothesis

The differential-evolution-based approaches to build decision trees generaté more precise and compact clas-
sifiers as compare to other decision tree induction methods with a statistical significance level not greater
than 0.05.

1.4 Contributions

The main contribution of this thesis is in the field of data mining, by introducing an appreach based on the
ditferential evolution algorithm to induce decision trees. In particular, to the best of our knowledge, it is the
first algorithm to build axis-parallel decision trees through this metaheuristic. A specific breakdown of the
main contributions is as follows:

* A procedure to estimate the number of nodes in a decision tree based on the characteristics ofithe
dataset whose classification model is constructed. This scheme can be used in any metaheuristic
that represents its candidate solutions as a fixed length sequence. This procedure is introduced.in
publication number 1.




Differential-Evolution-based methods for inducing Decision Trees

* A schéme*o build a feasible oblique tree: 1) from a real-valued vector representing only the inter-
nal nodes/of the tree, and from 2) the training set to add leat nodes. This scheme is introduced in
publicatiofi humber 2.

* A method torconstruct a feasible axis-parallel decision tree: 1) from a real-valued vector encoding only
the internal node§ of the tree, using a rule to discretize the values representing the attributes evaluated
in the test conditions, and from 2) the training set to add leaf nodes. This method is introduced in
publication number A",

1.5 Organization

This thesis is related to the knowledge/discovery techniques, specifically in the development of supervised
learning methods through bio-inspired-algorithms. This work belongs to the Generation and Application of
Knowledge Line named “Intelligent Systems’. of the Artificial Intelligence area of the Computer Sciences
Doctoral program of the Universidad JudrezAuténoma de Tabasco.

This document is organized as follows:*Chapter 2 outlines the elements commonly considered when a
decision tree induction method is implementéd\and describes the main drawbacks of greedy heuristics to
induce decision trees. An overview of soft computing techniques is also presented in this chapter, with em-
phasis on the types of metaheuristics. A“large part of this chapter is devoted to describing the studies in
the existent literature implementing somé-metaheuristic to build decision trees, with focus on 1) the repre-
sentation scheme of the candidate solutions and-2) the fitness function utilized for their quality evaluation.
Finally, a comparative analysis of these studies’is conducted’considering two elements: an analysis of their
constituent components and a comparison of theirexperimental studies.

In Chapter 3, the three algorithms proposed.in this the§is are described. First, the application of a
ditferential-evolution-based approach named OC1-DE to induce.oblique decision trees in a recursive parti-
tioning strategy is detailed. Next, a differential—evolutio?ased approach na.mean—ODT to induce oblique
decision trees in a global search strategy is outlined. Inthe DE-ODT algorithm, the internal nodes of a deci-
sion tree are encoded in a real-valued vector, and a population of them-aﬁyves using the training accuracy of
each one as its fitness value. The height of a complete binary decision tfee Whose number of internal nodes
is not less than the number of attributes in the training set is used to compute the size of the individual, and
a procedure to map a feasible oblique decision tree from one individual is applied. The best decision tree in
the final population is refined replacing some leaf nodes with sub-trees to impreve,its accuracy. The repre-
sentation B]eme of the candidate solutions used by the DE-ODT algorithm allows applying the differential
evolution operators without any modification, and the procedure for mapping a realfvalied chromosome into
a feasible decision tree ensures to carry out an efficient search in the solution space. The same considerations
utilized to represent an oblique decision tree are also applied in a differential-evolution-based approach to
finding a near-optimal axis-parallel decision tree. In this approach, named DE-ADT, theprocedure to map
a feasible axis-parallel decision tree from one individual uses both the smallest-position-value“tule and the
training instances.

The experimental study carried out to analyze the perfonnce of the three differential-evolution-based
methods implemented in this thesis is detailed in Chapter 4. First, a description of the datasets ﬁ@!}l this
study as well as the definition of the parameters of each method is given. Then, both the model validation
technique used in the experiments and the statistical tests applied to evaluate the results obtained are outljngd,
and a discussion about the performance of the DE-based methods is provided. Finally, in the last chapter,the
conclusions and the future works are provided.




Chapter 2

Background

Learning algorithms are the seeds, data is the
soil, and the learned programs are the grown
plants. The machine-learning expert is like a
farmer, sowing the seeds, irrigating and
fertilizing the soil, and keeping an eye on the
health of the crop but otherwise staying out of
the way.

Pedro Domingos, The Master Algorithm

2.1 Classification techniques in machine learning

ACHINE learning is an exciting area of the artifieial intelligeficé) whose objective is that an artificial
Mentithecmnes able to improve its performance (it learns) from.previously obtained results (its ex-
perience). Machine learning techniques to build models from known ‘datdhave gained importance over the
past few years due to the growing demand for data fBalysis in disciplinés such as data science, business
intelligence, and big data. It is widely known that the most representative imachine learning approaches
are supervised learning, where a model is learned from labeled data, and unsupervised learning, where a
model is obtained from unlabeled data. Main supervised techniques are classification and regression, while
clustering is the main unsupervised technique. Decision trees, arcial neural networks, and support vec-
tor machines have been widely-used to build predictive models, as well as cluste\ir?g methods have been
applied to construct descriptive methods. Many real-world problems such as the predictionof high-impact
weather events [244], the analysis of traffic situations [321], the study of customer feeciba;lgs [318], and the
evaluation of credit risks [155], amcmother diverse applications, have benefited with suchgriodéls.

Han, er al. [150] point out that data classification is a two-step process consisting of 1) lghrning step
when a classification model is built, and 2) a classification step when the model is utilized to prediet the class
membership of new unclassified instances, as shown in Fig. 2.1. The learning step uses a training s hich

is a group of pre-classified instances described by a vector a = (m a2, .ad) of d attributes
the variables of one problem and by a vector ¢ = (cl, . ,c_,.) of s labels identifying the class member;
of each instance. Each training instance is composed of a collection of attributes values and one class label.
Each k-th attribute in the training set has associated a set of possible values known as its demain D(ay). The
domain of a categorical atiribute is a collection of unordered values and is a set of real numbers or integers
for a numerical attribute [253].
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Figure 2.1: The leaming and classification steps in a classification process.
Classification model performance is usually evaluated through its predictive accuracy, which is computed

through the fest set, although criteria such a8”speed, robustness, scalability, and others can also be applied
[148]. Among the most widely used classification'methods, the following stand out:

Decision trees: A decision tree (DT) is_a’hierarchical model classifying an instance using an ordered se-
quence of decisions. Typically, a‘top-down appreach is used to induce a DT, starting with the complete
training set that is recursively divided by a partition rule. This rule applies some metric to select the
most appropriate test conditions to splitithe data. (The.most well-known algorithms to build DTs are
ID3 [301], C4.5 [303] and CART [46].

Bayesian classifiers: Mitra and Acharya [250] point-eut that'statistical methods are one of the oldest learn-
ing paradigms working under the assumption that statistical’'models can represent relationships be-
tween the attributes of a dataset. Han er al. [150]/dndicate that"Bayesian classifiers predict the prob-
ability that an instance belongs to one class. Naive Bayes Elassifier (NB) is the simplest form of
this type of classifiers. NB assumes that all the attributes of a sample are statistically independent
given their class labels (conditional independence). On the other hand, Bayesian networks (BN) are
graphical models allowing the representation of dependencies betweén'subsets of attributes.

Artificial neural networks: Lippmann [226] indicates that an artificial neuralihetwerk (ANN) consists of
many nonlinear computational elements (nodes) connected by links asso€lated with weighted vari-
ables operating in parallel. Basheer and Hajmeer [28Y point out that ANNs have been successfully
applied to solve many complex real-world problems in which learning is performediiteratively as the
network processes the training instances, trying to simulate the way a human being le:a.ms from pre-
vious experiences. The ANNs study has its origins in 1943 with the McCulloch and Pitts work [243],
but the interest in these models resurfaces in 1988 when Rumelhart et al. [312] publish ene method
to train a multi-layer perceptron (MLP) ANN. There are several ANN models such as the’backpropa-
gation neural network (BP-NN) [312], the recurrent neural network (RNN) [163], and the rad” | basis
function neural network (RBF-NN) [50]. ANNs have a low level of interpretability and requibs
parameters usually determined empirically, but they are very noise tolerant.

ome

Support Vector Machines: Vapnik et al. [367] introduced the vector support machines (SVM) in 1982.as
a kernel-based method used to find the hyperplane best separating the training instances into two dif-
ferent classes. An SVM first maps these instances into an attribute space and then finds the separating
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hyperplane maximizing the marginl between th classes. Without any knowledge of the mapping
schemg, the SVM finds the optimal hyperplane using a set of functions called kernels. The optimal
hyperple‘tﬁ_gescribed with a combination of entry points known as support vectors.

Instance-based classifiers: Mitra and Acharya [250] indicate that these classifiers use the characteristics
of the nearest neighbor to estimate the class membership of an unclassified instance. The k-nearest
neighbors (kNNYyalgerithm, proposed in 1967 by Cover and Hart [73], is one of the most representative
instance-based classifiérs. kNN finds the majority class among the k most similar training instances of
anew unclassified instanee and assigns it as its class label.

2.2 Decision tree induction

1

QDT is a white-box classification mwgp_rgsenting its decisions through a tree-like structure composed
of a set of nodes containing both ftest cﬁt@;{s (internal nodes) and class labels (leaf nodes). These nodes
are joined by arcs simbolizing the possibleefitcomes of each test condition in the tree. A DT is a rooted
directed tree T = (G(V,E),vl), where V is thé\set of nodes, E is the set of edges joining pairs of nodes in
V, and vy is its root node [310]. In particular, if V has m nodes, for any j = {1‘ Lo } the set of successor
nodes of v; € V is defined as follows:

N*(v)) = {vk eV ={1,. YmyAk+# jA(vj,v) € E}. 2.1)

Furthermore, a DT is a data-driven classification model fitsf induced using a training set and then applied
to predict the class membership of new unclassifiedsinstances+Fig: 2.2 shows an example of a DT induced
from the iris dataset [115] using the J48 method [386]. This\dataset has four attributes, three class labels,
and 150 instances.

= 1.7

Iris-virginica (46/1)

[fris-rc'r.w'(-mfm' f}.-".‘,l] [Iri.\'-rr'r;ga'uica 3/ ]
Figure 2.2: A DT induced from the iris dataset.

DTs stnd out for their simplicity and their high level of interpretability, and since the“decision tree
induction (DTI) process determines the importance of the attributes when builds the test cbuﬁiqns, DTs
provide an embedded feature selection mechanism [214]. These characteristics along with ugfaictive
power allow placing to DT as one of the most widely used classifiers. DTs have been applied in|séveral
domains of science and engineering such as cellular biology [344], pharmaceutical research [32], mjc
health [389], electrical energy consumption [358], and transport studies [167]. among others. 'q

Ritschard [308] discusses DTI origins. He argues that the work published by Belson in 1959 [23] could
be the first study about a DTI process applied to analyze survey data previously collected. The Automatic

! One margin is the gap between the training instances closest to the hyperplane separating them [1].
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Interaction.Detector (AID) method [252] is known as the first algorithm developed to induce regression trees,
and the Conéept/Learning System (CLS), introduced by Hunt in 1966 [168], is considered as the patriarch of
the classificationtree induction methods [301]. It should be noted that CART [46] and C4.5 [303] have been
recognized as twqQ of the ten most influential methods of data mining [388].

The quality of the DTI procedure affects both performance and expressiveness of one DT. This procedure

olves 1) the splitting criterion to measure the quality of the test conditions, 2) the way of dealing with
numerical and categorical attributes, and 3) the mechanism to handle missing values. Furthermore, tree
pruning techniques are alsé applied to eliminate overfitted tree branches and to try to improve the predictive
power of the induc ee. Several studies have been conducted to describe, analyze, categorize and compare
techniques for DTI such as those of Mingers [248], Safavian and Landgrebe [315], Brodley and Utgoff [49],
Esposito ef al. [104], Breslow and/Aha [47], Murthy [259], Rokach and Maimon [310], Kotsiantis [198],
Lomax and Vadera [237], Loh [234], and Barros ef al. [17], among others.

2.2.1 Types of decision trees

Two types of DTs can be induced, followimn®sthe number of attributes evaluated in each test condition:
univariate and multivariate DTs. In a univariate DT, each test condition evaluates a single attribute to split
the training set. On the other hand, a combinatien of attributes is used in each test condition of a multivariate
DT. Two advantages of univariate DTs arestheir great interpretability as well as the simplicity of algorithms
to build them; however, when the distribution-ef instancesin the training set is complex, induced DTs include
many internal nodes. On the other hand, mtiltivariate DTs commonly show better performance, and they are
smaller than univariate DTs, but these are leSs expressive and might require more computational effort to
induce them.

Univariate DTs are also known as axis-parallel (AP) ‘DTs"since their test conditions represent axis-
parallel hyperplanes dividing the instance space into“two or-more disjoint regions. If the test condition
evaluates a numerical attribute, this hyperplane is defined with"the/inequality x; < ¢, where x; is the value
of the i-th attributn the training set, and ¢ is a threshold value used)to define the partition (Fig. 2.3(a)).
Otherwise, if one categorical attribute is evaluated, the‘training set™€ split into as many subsets as values
there are in the domain of the attribute.

OO 0O NG

i -

(a) AP-DT (b) OB-DT (¢} NL-DT
Figure 2.3: Decision tree types (Adapted from [287] and [14]).

In the case of a linear combination of attributes, DTs are named oblique (OB) DTs as their test conditions
represent hyperplanes having an oblique orientation relative to the axes of the instance space. An oblique
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hyperplane?/qgﬂned as follows:

d
Y wixi <6 (2.2)
i=1

where w; 1s a mhﬁhpd coefficient corresponding to the i-th attribute value x; of a training set with d
attributes, and 6 repregents the independent term in the hyperplane. Fig. 2.3(b) shows an example of
one oblique DT. Similatly#non-linear (NL) DTs produce curved hypersurfaces as they utilize a non-linear
combination of attributes. #For example, the test condition used in the root-node of the DT shown in Fig.
2.3(c) represents a quadratic’hypersurface.

Moreover, Wang et al. [381] argue that uncertainty such as fuzzineffJ) and ambiguity should be incor-
porated into the process of leamhingfrom training instances. Soft (SF) DTs implement a soft test at each
internal node representing the probability that a branch from a node is selected based on the evaluation of its
test condition. The soft DT shown, uﬁ_g. 2.3(d) represents a fuzzy DT.

2.2.2 Splitting criteria for decision tree induction

The splitting criterion applied to measure the guality of the test conditions in a DT is perhaps the element
that has the greatest impact to determine both\the effectiveness and the expressiveness of the classifier.
These criteria can measure the impurity of a partitienor estimate some discriminant value, and they also can
evaluate some cost value. Besides, to consider the presence of uncertainty and ambiguity in the information,
a soft measure should be included in a splitting criterions

A typical way to group the vast numbert0f partition-€riteria found in the existing literature is by the
number of attributes used in each test condition./Several.adthors classify the univariate splitting criteria as
information-theory-based criteria, distance-based criteria, and other criteria. Information gain (IG) [301],
the G statistics [247] and the gain ratio (GR) [303].are the most representative information-theory-based
splitting criteria. Giniindex and the twoing rule [46] are the most'Commonly applied distance-based splitting
criteria. Furthermore, several strategies such as the minimum description length (MDL) principle [305], the
area under the curve (AUC) of the receiver operator chatacteristic (ROC) curve? [112] and other procedures
also have been utilized as univariate splitting criteria. On the other hand, the linear discriminant analysis
(LDA) [235], some marhematica.l—progranaing—based procedures [269, 341] and other mechanisms have
been applied to define multivariate splitting criteria. Details of the splitting critetia used for DTI are discussed
in several surveys such as those of Safavian and Landgrebe [315], Murthy [259], Rokach and Maimon [310],
Lomax and Vadera [237], Lee et al. [217] and Barros er al. [17], among others.

2.2.3 Tree pruning approaches

Kotsiantis [198] indicates that tree pruning permits to generalize previously induced DTs by removing both
nodes and sub-trees with the aim of avoiding overfitting. Also, tree pruning is applied todmprove the com-
prehensibility level of a BJ[. Cost-complexity pruning [46], reduced-error pruning, and pessimistic-error
pruning [302], as well as error-based pruning [303], are considered the most typical pruninguméthods. De-
tailed studies about tree pruning have been carried out by Mingers [248], Reed [307], Esposito@l. 4],
and Breslow and Aha [47], among others. Sa

2ROC curves are two-dimensional graphs in which the proportion of true positive cases in the data that are correctly ientified
as positive (sensitivity) is plotted on the Y-axis, and the proportion of true negative cases that are mistakenly identified as pa @
(false positive rate) is plotted on the X-axis [105].
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2.2.4 Deeision tree induction methods

There are several.methods to build univariate DTs. The ID3 algorithm is introduced by Quinlan [301] to
induce DT's from & training set with categorical attributes. Next, he develops the C4.5 method [303, 304] as
an ID3 improvement including the use of real-valued attributes and one procedure to handle missing values.
C4.5 also introduces a pruning tree stage. Furthermore, he implements the C5.0 version which first generates
several classifiers rather than just one and then applies a voting scheme to predict the class membership of a
new instance. On the other'frand, the J48 procedure described by Witten er al. [387] is a well-known Java-
based implementation of C4:5, and the REPTree algorithm [386] utilizes the reduced error pruning method
to build a pruned DT.

In the case of multivariate DTs,two types of DTI procedures can be identified. First, those inducing
only oblique DTs such as the linear machine DT (LMDT) algorithm described by Utgott and Brodley [365]
utilizing a linear machine as one,test condition, and the multi-surface method (MSMT) implemented by
Bennet [24] in which a linear-programming-based algorithm is applied to build test conditions. Next, those
producing mixed DTs with both axis-paralleland oblique hyperplanes, such as the CART method introduced
by Breiman et al. [46] to induce classificationsand regression trees, the LTree algorithm described by Gama
[136] based on LDA to find better test conditions, the QUEST (quick, unbiased, efficient, statistical tree)
algorithm developed by Loh and Shih [235] in\which both statistical tests and one LDA-based procedure are
applied to build test conditions, and the CRUISE,(classification rule with unbiased interaction selection and
estimation) approach described by Kim"and Loh [190]).Furthermore, the non-linear DT (NDT) induction
procedure [172] based on a combination of attributes ‘and the augmentation of the attribute space, and the
cost-sensitive non-linear DT (CSNL) method[366] are examples of non-linear DTI procedures.

On the other hand, the cost-sensitive ID3 (CS/AD3) algotithm [347], the IDX method [270], the economic
generalizer 2 (EG2) algorithm [271], and the cost-senSitive J48-(CS8J48) method [386] are examples of cost-
sensitive DTI algorithms. Finally, the fuzzy c-mednselustering (FCM) algorithm [28], the fuzzy ID3 (F-ID3)
method [69], and the C-Fuzzy DT approach [285] axe examplest soft DTI methods.

.5 Recursive partitioning problems

Most of the DTI methods described in the existing literature apply a récussive partitioning strategy imple-
menting some splitting criterion to separate the training instances. This Eﬁm‘} usually complemented with
a pruning procedure to improve the performance of the classifier. Several stiidies point out that this strategy
has three fundamental problems: overfitting, selection bias towards multi-valued‘atiributes, and instability to
small changes in the training set.

A DT suftfers from overfitting when its classification performance is lower than'itsdearning performance.
Overfitted DTs are more complex than necessary. Mitra and Acharya [250] indicate that this,problem occurs
when data contain noise or irrelevant attributes, and when the training set size is"small. On the other
hand, several studies have shown that some splitting criteria are biased to sclect an attribut€ type over others,
even though this selection affects the DT performance. For example, both the IG criterion andha Gini index
are biased in favor of multi-valued altributea384]. Hothorn ef al. [165] established that DT expressiveness
is affected by the biased attribute selection. Finally, Strobl er al. [342] argued that the main pro f DTI
methods is their instability to small changes in the training set. They remark that in recursive partitioning
the exact position of the cutpoint, as well as the selection of the splitting attribute, strongly depend{on the
particular distribution of the training instances. ]

The incremental tree induction approach [364] and the use of ensembles of classifiers such as bagging,
boosting, decision forest (DF) [157] and random forest (RD) [-n have been implemented as alternatives to
avoid the problems of recursive partitioning strategies for DTI. On the other hand, algorithms implementing
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a global seafch.strategy can ensure an efficient exploration of the solution space although it is known that
building optimalDTs is NP-Hard [170]. In particular, the implementation of metaheuristic-based approaches
for DTI allow!eﬂ‘lﬁgructing DTs that are more accurate than those inducing with traditional methods due to
they use intelligehf\search procedures combining their exploration and exploitation skills, thus providing a
better way to discovet the relationships between the attributes used in the training set.

2.3 Metaheuristics-as.a component of soft computing

Soft-computing-based approaches have been widely used to solve complex problems in almost all areas of
science and technoay such ag’medicine, manufacturing, education, economics, big data, and data min-
ing, among others. These approaches try to imitate the human reasoning process when solving a problem
with the objective of obtaining acceptéble results in a reasonable time. Bonissone [35] points out that real-
world problems typically are ill-defined systems, difficult to model, and can have large solution spaces, and
he also argues soft computing technologies provide us with a set of flexible computing tools to handle the
available information and to solve these problems. Zadeh [394] coined the term soft computing to refer to
three approaches used to solve problems with genditions of uncertainty or imprecision: fuzzy logic, ANN,
and probabilistic reasoning. Fuzzy Logic [395]\4s considered an extension of boolean logic using a set of
membership functions to represent the degree of truth of linguistic variables, and probabilistic reasoning is
characterized by its ability to update previous outcome estimates by conditioning them with newly available
evidence [35]. Fuzzy logic has been applied'to build soft DTs and ANNs, and probabilistic reasoning meth-
ods such as NB have been used for classification tasks. AS time went by, other techniques such as genetic
algorithms [43] and SVM [184] have been ineluded undegthisterm.

On the other hand, Birattari [30] indicates that metaheuristics.(MHs) are general algorithmic templates
that can be easily adapted to solve almost all optimization problems. Du and Swamy [90] emphasize that
the MHs are higher level procedures used to generate lower level search heuristics. MHs try to simulate
th intelligent processes and behaviors observed in nature and othepdisciplines. These are characterized by
combining the exploration of the search space to identify promising.aréas and exploitation of these areas to
improve the known solution or solutions. MHs might or not might provide Mimal solutions, however usually
are largely satisfactory, in contrast to other techniques failing to solve the'pyﬁlg:m or spending excessive time
finding the best solution. Nowada)a\/[Hs are widely accepted as a soft comiputing component [35,43, 370].

Talbi [346] classifies MHs as single-solution-based (SS-based) MHs and population-based MHs. SS-
based MHs implement intelligent search procedures that iteratively replace (Mdate solution with a
neighboring solution with the aim of reaching a near-optimal solution. Fig. 2.4 shows'the general scheme of
SS-based MHs. Main elements of this type of MHs are 1) a criterion to define neighborhgod structure, 2) a
selection process choosing the solution to replace the current solution, and 3) a stop condition of the search.

The following SS-based MHs have been used to implement DTT methods:

Stochastic Local Search (SLS): Hoos [162] indicates that SLS methods apply stochastic meehanisms such

as probabilistic heuristics to find a near-optimal solution for a complex problem.
)

Simulated Annealing (SA): Kirkpatrick ef al. [193] introduce SA as a method simulating the physical pro-
cess of annealing in solids, where the aim is to achieve the lowest energy state for a system. on
er al. [180] point out that SA is motivated by the desire to avoid getting trapped in a local opti R
hence occasionally selects one worst solution to explore other areas of the search space.

Tabu Search (TS): Glover [142] describes TS as an iterative method applying a local search in the neigh-
borhood of a candidate solution to provide a near-optimal solution for a complex problem. TS discards
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the neighbors previously visited and puts them'in a tabu list. Bennett and Blue [26] argue that the dy-
namically changing tabu lists, as well as the neighborhoods, help to move out of a local optimum and
continue searching for better solutions"without cyeling.

Greedy randomized adaptive search procedure (GRASP): Feo and Resende [108] develop GRASP as a

greedy search method that, instead of always selecting the best solution in the neighborhood of a
current solution, it generates a group of best.solutions and randomly selects one of them to replace the

current solution.

On the other hand, poalation—based MHs use a group of candidat€ solutions in each step of their iterative

process. Some of them generate new candidate solutions by recbrﬂﬁja,j_ng information from the current
solutions, and some others update the properties of the candidate solutions. The most commonly used
population-based MHs are related to evolutionary algorithms and swarm infelligence methods.

Evolutionary algorithms (EAs) are inspired by the theories synthesizing' the/Darwinian evolution through
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Figure 2.5: The general scheme of an EA.

natural selection with the Mendelian genetic inheritance. Fig. 2.5 shows the gengral scheme of an EA.

)
©

In each iteration of its evolutionary process (known as a generation), a group of candidate solutions
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(individuals) eyolves by applying selection (SEL), crossover (Xover) and mutation (MUT) operators. New
populations ©f individuals are created until a stop condition is reached and then the best solution of the
last population*i§ teturned. Commonly, two individuals (parents) are selected, and their values (genes) are
recombined, and somletimes they are mutated, to create new candidate solutions (offsprings). Offsprings are
considered to be part’ofithe new generation. The following EAs have been used to implement DTI methods:

Evolutionary Strategies (ES): Rechenberg [306], Schwefel [320], and others developed ES as a global
optimization algorithim torsolve problems with real-valued parameters. An individual in ES encodes a
candidate solution as®vellas its mutation parameters. Several ES variants have been developed, such
as the (1+1)-ES generating a single offspring from a single parent, and the (g + A)-ES using y parents
to create A offsprings.

Genetic Algorithm (GA): Holland JI58] describes a GA as a strategy to move from one population of
candidate solutions to another applying a kind of natural selection along with the genetic operators of
crossover and mutation. In GA, a‘candidate solution is commonly encoded using a linear chromosome,
but other schemes have been applied:"Each chromosome in the population is evaluated with a fitness
function indicating the quality of the €andidate solution.

Genetic Programming (GP): Koza [199] introduces GP to optimize a population of computer programs
according to their ability to perform’a task. Poli et al. [295] point out that GP programs are usu-
ally expressed as Lisp S-expressions-(8-Exps)<[242] in which variables and constants are leaf nodes
(terminals) and operations are considered internal nodes (functions). Several GP variants such as the
grammar-based GP (GGP) and the strongly-typed GE:(TGP) have been implemented, to ensure that
each chromosome in the population represents a feasible tree structure. In GGP, a grammar encoded
using the Backus-Naur form (BNF) allows formally define GP structures and automatically ensures
that the typing and syntax are maintained by anipulating the explicit derivation tree from the gram-
mar [383]. On the other case, TGP is an enhanced version of-GP applying data type constraints [251].

Co-evolutionary Algorithms (CEA): Lohn er al. [236)indicate that«CEAs are inspired by the cooperation
and the competition among populations of organisms in nature” Ceaeperation is presented to achieve
a common objective and competition occurs when there are limited'resources for many individuals.
Hillis [156] points out that a competitive CEA is implemented when individual fitness value is eval-
uated through competition with other individuals in the population, rather than through an absolute
fitness measure. On the other hand, Potter [296] argues that a cooperative CEA splits a problem into
several components evolving independently, improving some fitness value. /The interaction between
populations occurs in the cooperative evaluation of each of their individuals.

Differential EvnlutilmDE): Storn and Price [340] develop DE as an EA evolving a population of real-
valued vectors to find a near-optimal solution to an optimization problem. Instezufbﬁmplementing
traditional crossover and mutation operators, DE applies a linear combination of sévefal randomly
selected individuals to produce a new individual. DE is characterized by using fewer parameters than
other EAs, and by its spontaneous self-adaptability, its diversity control, and its continuousimprove-

ment [ 109].
=

Grammatical Evolution (GE): Ryan er al. [313] introduce GE as an EA that uses a grammar to generate
computer programs. GE simulates the gene expression process to produce a protein in an organism
(DNA — RNA — Protein). In the GE process (binary string — integer string — free) one individualas
a binary string that is decoded into an integer string, and one grammar is applied to build a computer
program [18].
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Gene Expression Programming (GEP): Ferreira [110] implements GEP asax EA using fixed-length lin-
ear chfomé@somes (genotypes) encoding expression trees (phenotypes). A linear chromosome is com-
posed of*ofie_ or more genes each one structurally divided into a head and a tail. The head encodes
elements of !@: function and terminal sets, and tail works as a buffer of terminals to guarantee the
formation of.enly valid structures. In GEP, a multigenic chromosome encodes several expression
trees. GEP uses replication, mutations, transpositions, and recombinations as genetic operators. In the
case of problems with real-valued constants, GEP introduces a new element in the chromosome struc-
ture known as the D¢ domain. Dc is composed of symbols representing randomly created numerical
constants (RNC). For simplicity, Dc symbols are the indexes of an RNC array.

2
Furthermore, Swarm intelliM ST) methods are inspired by the collective behavior of some groups of
animals such as ants, bees or birds. Vigsek and Zafeiris [372] indicate the main feature of this behavior
is that one individual action is dominated by the influence of the others. In SI methods, a group of candidate
solutions (particles, agents) are moved.ifi the search space by updating their properties combining local
information with global information of the swarm transmitted by some type of communication scheme (Fig.
26).
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Figure 2.6: The general scheme of an SI method.
Two SI methods have been applied to build DTs:

Ant Colony Optimization (ACO): Dorigo [89] develops ACO as a swarm intelligence approach in which
a colony of artificial ants is used to find near-optimal solutions to hard optimization problems. ACO
mimics the foraging behavior of a colony of real ants. Blum [33] points out'that ACO is inspired by
the indirect communication between ants using chemical pheromone trials, which efables them to find
short paths between nest and food.

Particle Swarm Optimization (PSO): Eberhart and Kennedy [97] introduce PSO as a population-based
optimization technique inspired by the social behavior of a swarm of animals (ants, bees. of\birds) to
obtain a promising position and to achieve specific objectives. In PSO each particle has a pesition and
moves based on velocity updates. gﬂ

Finally, Du and Swamy [90] point out that a hyperheuristic (HH) is a search procedure implemented to
build algorithms that efficiently solve hard search problems. HHs explore the space of problem solvers rather
than searching in the space of problem solutions (Fig. 2.7).
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2.4 Differential evolution algorithm

DE is an effective EA designed to solve optimization problems with real-valued parameters. DE evolves
a population X = {(l,xl)‘ (2,.{3), ey (NP,.{NP)} of NP individuals by applying mutation, crossover, and
selection operators with the aim to reaeh a'near-optimal.selution. To build a new candidate solution, instead
of implementing traditional crossover andsmutation opérators, DE applies a linear combination of several
individuals randomly chosen from the currefit,population#Each individual in the population is a real-valued
vector x = (_n X2, .. .,.r,,) of n parameters represénting one’candidate solution. The evolutionary process on
DE is guided by a fitness function f: R" — R determining the.quality value of each candidate solution.

In this thesis, the standard DE algorithm [340]; named DE/sand/1/bin in agreement with the nomenclature
adopted to refer DE variants, is used as a proceduresto find a near-optimal solution. DE can be considered a
nee—step process including an initialization phase, the evolutionarysprocess, and the final step determining
the result obtained.

The initialization phase involves the selection of a set of uniformly distributed random individuals from
a finite search space £ C R" to build the initial DE population, known as Xg. If for each j € {1 n}, xmin
and t"m are the minimum and the maximum values of the j-th parameter@ €, respectively, the j-th value
nthe individual x' in the initial population is calculated as follows:

){i |n|n+r( max x;piu) (2‘3)

where r € [0, 1] is a uniformly distributed random number.

The evolutionary process implements an iterative scheme to evolve the initial popufation. At each iter-
ation of this process, known as a generarion, a new population of candidate solutions is génerated from the
previous one. For each i € { L... NP} in the g-th generation, x' is taken from the X,_; po‘%n, and it is
used to build a new vector u' by applying the mutation and crossover operators. Vectors x' and-# ace known
as the rarget vector and the trial vector, respectively. These vectors are evaluated by the selecwjerator
to update a new population X,. In particular, the DE/rand/1/bin algorithm uses the following e\'«'\lit‘mary
operators:

. Muratnz: Three randomly chosen candidate solutions from X, (x™, x'* and x"™) are linearly @,
bined to yield a mutated vector, as follows:

V="t +F(x’3 —x“), (2.4)
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where'F is % user-specified value representing a scale factor applied to control the differential variation.

B Cmssovwe mutated vector is recombined with the target vector to build the trial vector. For
each j € {m,n} , either ,rj- or v} is selected based on a comparison between a uniformly distributed
random numberf;, € [0, 1] and the crossover rate CR. This operator also uses a randomly chosen index

le {l,. . .,n} to énsure that 1’ gets at least one parameter value from v’-, as follows:
; v;- ifr<CRorj=1,
uj=4q . (2.5)
.r;. otherwise.

« Selection: A one-to-one tousnament is applied to determine which vector, between x* and i, is selected
as a member of the new population X,,.

In the final step, when a stop conditien is fulfilled, DE returns the best candidate solution in the current
population. The Algorithm | shows the gtrugture of the classical DE/rand/1/bin method. Figure 2.8 shows
an scheme of the application of the DE operatots to build a new individual for the next population.

Algorithm 1 Classical DE algorithm introduced by,Storn and Price in [340].
function DIFFERENTIALEVOLUTION(CR, F, NP 1)
Input: The crossover rate (CRJ. the_scale factoe«(F), the population size (NP), and the size of the

real-valued vector ().
Output: The best individual in the lagfipopulation ().

g+ 0
X, @
for eachic {1 ..... NP} do
for each j € {1 ..... n} do
xj 4~ A randomly generated parameter using (2.3)
end for
Xg X U{(i,x") }
end for
while stop condition is not fullfilled do
g—g+l
Xy — &
for eachi e {1_...._.NP} do
x' ¢ Target vector from X,
v « Mutated vector generated using (2.4)
u' « Trial vector constructed using (2.5)

X XU {(i,uf)} if f(u') is better than f(x')
4 4 {(i,a")} otherwise )
end for
end while S;\
xPest . The best individual in X, .
return x"st O

end function
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1

EE has several advantages in comp: ) with other MHs such as the simplicity of its implementation,
its ability to produce better results than those“obtained by the others, and its low space complexity [80].
The mutation operator propitiates that the methied exhibits a good trade-off between its exploitation and
exploration skills, i.e., it is more explorative atthe beginning, but it is more exploitative as the evolutionary
process progresses [263]. Furthermore, the crossover and selection operators provide diversity control and
continuous improvements in the DE algorithm. respectively [109]. On the other hand, although DE requires
the definition of a smaller number of parameters compared to other MHs, its performance is sensitive to the
values selected for CR, F, and NP [401].

DE has been utilized to implement classification metheds in conjunction with SVMs [221], ANNs [218],
Bayesian classifiers [141] and instance-based classifiers [138].In the case of its use with DTs, DE is applied
in the DEMO (DE for multiobjective optimization).algorithm«[362] to find the most suitable parameters so
that the J48 method [387] yields more accurate and'small DTs. DE.also is used in the PDT (Perceptron De-
cision Tree) algorithm [238] to find a near-optimal obligue DT. Each'individual in the PDT method encodes
the coefficients of all possible hyperplanes of one fixed-depth oblique'DT,

Although DE was defined to solve problems with real-valued parameters, it has been applied with success
to many combinatorial optimization problems such as the traveling salesman problem [350], the vehicle rout-
ing problem [249], and the flow shop scheduling problem [223], among others. Prado et al. [297] describe
several DE adaptations to solve this type of problems such as those implementing apermutation matrix, those
sorting the parameters vector, and those applying a forward/backward transformation between a real-valued
vector and an integer-valued vector. In the permutation-based approach [298] a modified permutation matrix
representing the difference between two randomly chosen vectors is applied to permute another randomly
chosen vector, to build a mutant vector. Furthermore, in two relative-position-indexing<based approaches,
the parameters values of a vector are ranked either in descending order with the largest-order-value (LOV)
rule [299] or in ascending order with the smallest-position-value (SPV) rule [349] to obtain’asequence of
discrete values. Finally, a forward/backward transformation [275] involves a three-step procedure: First, a
set of integer-valued vectors are transformed into a set of real-valued individuals. Next, theserindividuals
are manipulated using the DE operators, and then the resulting individuals are turned back into‘theinteger

domain.
(\
(@
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2.5 Metaheuristics for decision tree induction
P

Several surveys !es_cribing the implementation of MH-based approaches for DTI have been previously pub-
lished. Galea er gl\[135] analyze different EA-based strategies to automated fuzzy knowledge acquisition
through DTs and%ﬁﬁﬂicalion rules. Espejo et al. [103] surveys the existing literature on GP-based ap-
proaches to generateyclassification models such as DTs, classification rules, and discriminant functions.
Kokol et al. [195] describe several EA-based approaches for DTI with focus on their application in medi-
cal domains such as breast caneer diagnosis, pediatric cardiology studies, and orthopedic fracture analysis,
among others. Barros ef al”[14]\provide a detailed description of the application of EAs to induce classifi-
cation and regression trees. Also,.they describe the application of EAs to implement pruning methods and
to handle cost-sensitive mechanisms!” Finally, Kolge and Frasheri (2014) [196] summarize some MH-based
approaches for DTI using GAs and SS;based MHs such as SA and TS.

To describe the studies in the ‘existing literature concerning MH-based approaches for DTI, in this the-
sis each study is associated to one of the"following implementation strategies: recursive partitioning (RP),
global search (GS), and subsequent optimization (SO). In the first case, several studies implement a recursive
partitioning strategy utilizing an MH-based approach to find a near-optimal test condition for each internal
node. Recursive partitioning with MHs is most commonly used to induce multivariate DTs. On the other
hand, MH-based methods can perform a global search in the space of DTs with the aim of finding near-
optimal DTs. Global search is commonly ifnplemented through EAs. Finally, a different strategy is to apply
an MH-based algorithm to optimize a DT previously«indiiced by some classification method. This strategy
is implemented to improve the DT perfermance or tg'introduce new characteristics such as membership
functions for soft DTs. Fig. 2.9 shows a graphical scheme of.these strategies.
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Figure 2.9: Strategies implemented by the MH-based approaches for DTL.

In the following sections, a review of the studies in the existing literature implementing MH—ba@ -
proaches for DTI is presented. This review is organized according to the type of MH used (SS-based )
EAs, and SI methods) and the type of the DT induced (AP, OB, NL, and SF). The implemented strategy in
each study is identified as well as the main features of each MH-based approach such as the fitness function
(FF), the set of variation operators, the candidate solutions representation scheme, and the procedure to build
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initial solutions, among others.

Several sampling methods, different performance measures, and various statistical tests have been used
to carry out an€xperimental analysis of the MH-based approaches for DTI. Two types of studies can be

distinguished in this review: those providing only a general description of their implementations, and those
analyzing their expetimental results. For the last case, the results obtained by one MH-based approach for

DTI are compared with'those obtained by other classification methods, whose list is given in Table 2.1.

Table 2.1: Methods used to gompare the performance of MH-based approaches for DTL

Method Description Method Description

Methods to build univariate DTs:

CHAID Chi-square automatic interaction'detection [183] 1ID3 Quinlan (1986) [301]

D3-S Fayyad & ITrani (1992) [107] C4.5 Quinlan (1993, 1996) [303,304]

RID3 Rank-based 1D3 [280] PART Frank & Witten (1998) [121]

J48 Witten & Frank (1999) [387] SampleC4.5 Statistical sampling method into C4.5 [129]

MiDeciT Advanced tool for building DTs [11] REPTree Reduced-error pruning tree [386]

RTree Random tree [386] BFTree Best-first DT [324]

jaDTI  Java DT implementation [ 197]

Methods to build multivariate DTs:

CART  Classification and regression trees [46] LMDT Linear machine DT [365]

MSMT  Multi-surface method [24] NDT Non-linear DT [172]

QUEST Quick, unbiased, efficient, statistical tree’[235] RPART Recursive Partitioning and Regression Trees [351]

LTree Linear tree [ 137] APDT Alopex Perceptron DT [322]

CRUISE Classification rule with unbiased interagfion selec- LDSDTgg  Discrete support vector DT method with B&B [277]
tion and estimation method [190]

Methods to build cost-sensitive DTs:

CS-ID3  Cost-sensitive ID3 [347] 1IDX Norton (1989) [270]

EG2 Economic generalider 2 [271] MetaCost Dominges (1999) [88]

CS5J48  Cost-sensitive J48 [386]

Methods to build soft DTs:

MB Merging Branches [379] G- Fugey DT Clusiered-oriented fuzzy DT [285]

Methods to build classification rules:

CN2 Clark & Niblett (1989) [T1] IR One-rule'method [ 160]

ESIA An extended supervised inductive algorithm [227]  CEFR-Miner Co-Evolutionary Fuzzy Rule Miner [245]

PRIE Fawcett (2008) [106]

Ensemble methods:

AdaBoost Adaptive Boosting [127] ADTree Alternating DT[126]

Other methods:

FR Linear ratio method [115] FW Frank-Wolfe method,{122]

LR Logistic regression [74] Huffman Huffman algorithm [ 139]

IB1 Instance-based learning [5] TF Thresholding on one feature method [63]

PCA Principal component analysis [63] M35 Frank & Witten (1998) [121]

LMT Logistic model tree [216] FlatOE Flat Operator Equalization fethod [328]

Fitness function: This function defines the quality measure utilized to guide the search of anear-optimal
candidate solution. In general, both uni-objective FF (UF) and multi-objective evaluation eciteria have

been used with MH-based approaches for DTL A single fitness measure is applied with a uni—objéctive
FF, and two or more fitness measures are assessed to estimate the quality of a candidate solution n'the

case of a multi-objective FF.

.

Following the multi-objective literature [72,81], two schemes to determine the quality of a candidate

solution are described in this review: On the one hand, an aggregating FF (AF) defines a weighted
combination of fitness measures to assess the quality value of a candidate solution. Weighting coef-
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2
ficients represent the relative importance of each measure in the combination. On the other hand, a.
multi-6bjeétive EF (MF) first evaluates each measure separately and then applies: 1) a lexicographic
ordering’efiterion to rank the fitness measures in order of importance. or 2) a Pareto-based fitness
assignmen&tggy to find a set of non-dominated candidate solutions?.

Several splitting criteria and various performance measures have been used as fitness measures in these
approaches. The G ctiterion [301], the MDL principle [305], and the GR [303, 304], as well as the
Gini index and the tweing rule [46], have been utilized in several MH-based methods implementing
a recursive partitioning’strategy. Furthermore, the margin of separation (SepM) [277], the degree of
linear separability (DL [322], and the dipolar criterion [34], as well as the Max minority (MaxM)
[153], the sum minority (8UmM) [153] and the sum of variances (SumV) [153] measures have been
used to select the best hyperplane when an MH induces an oblique DT. Finally, the sum of the square-
root-error (SSR) [326] is also applied as fitness measure in clustering-based DTI methods.

On the other hand, several performarice measures such as accuracy (Acc), misclassification error (ME),
misclassification cost (MC), size apdyrunning time have been used as fitness measures in DTI methods
implementing both global search and subsequent optimization strategies. Furthermore, the following
measures defined through the confusionatrix [194] also have been applied with these approaches:
precision (P), sensitivity (Sen), specificity (Spe), false positive rate (FPR), false negative rate (FNR),
and the F-measure (FM).

Representation scheme: Candidate solutiens of the MH-based approaches for DTI have been represented
either as linear sequences of values orfas tree structires. Linear sequences of values are commonly
used by several EAs such as GA, GE,'GER and DE,and.GP, GA, and CEAs utilize tree structures. If
the first scheme is applied to represent DTs, a procedire to_map a valid DTs from it must be defined,
and when the second is employed, a set of particular variation operators to generate only feasible
solutions must be applied. In particular, when a_sequence”ofjvalues is utilized with DTI methods to
induce multivariate DTs, one candidate solution represents the.ecombination of attributes evaluated by
the test condition of each tree internal node.

Variation operators: These operators are applied to build new candidate glutions through two strategies:
1) by altering the values of the current solution, and 2) by merging the information of several candidate
solutions. Each MH-based approach defines its variation operators in-function of the representation
scheme adopted, and with the aim to construct only feasible solutions.

Initialization procedure: Although the random generation of the initial candidatg’solutions is the strategy
most commonly implemented by the MH-based approaches for DTI, some methods,start their search
process with a fixed solution, or they build several variants of a DT created with”anether induction
method such as the C4.5 algorithm, the MSMT procedure, and the Branch & Bound {B&B) method
[215].

Performances measures: A performance measure helps to compare and to evaluate the predictive power
of a classifier [68, 113,332]. Several performance measures can be defined using the elements, of the
confusion matrix [194], and the others are based on ditferent criteria such as the ROC curve palysis
[334]. the AUC value [151], the Hypervolume (HV) metric [403]. and the fidelity (Fid) of the i(iluced
DT [75].

3 A solution is non-dominate if it does not exist another candidate solution better than the current one in some objective function
without worsening other objective function [81].
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Sampling methods: Hu er al. [166] indicate that the main goal of sampling is to select a representative

subset’of data from a dataset which will be used in an experimental study. Sampling methods are
accepted-as validation procedures to determine the generalization power of a classifier [68]. Both
cross-validation (CV) and hold-out (HO) are the sampling methods most commonly used to evaluate
the robustness‘of'a classifier [10,398]. An average of the results obtained from several repetitions of
the validation procedure is usually applied to achieve more reliable performance results. Several CV
variants such as k-fold CV [339], 5x 2-CV [87], and the leave-one-out CV (LOOCV) [339] have been
applied as sampling/methods in some MH-based methods. Although the induction of DTs with the full
dataset (FD) is not an adequate procedure to validate the performance of a classifier, this approach has
been applied in some of*the-early MH-based methods, mainly to demonstrate the feasibility of their
implementation.

Statistical tests: Dem3ar [85] describes and evaluates several statistical tests used to compare the perfor-

mance of several classifiers. These criteria can be grouped into two categories: Those comparing
two classifiers and those evaluatingsseveral classifiers. Both the ANOVA test [116] and the Fried-
man test [128] are the statistical tests_miost commonly used to examine the differences between the
experimental results of several classifiesss~Luengo et al. [239] indicate that numerous post-hoc tests
have been developed to determine if amalgorithm has statistical differences concerning other meth-
ods. Table 2.2 describes the statistical tests employed to compare the performance of the MH-based
approaches.

Datasets: Two types of datasets have been ugsedto compare the performance of MH-based approaches for

DTI. The UCI machine learning repository [225] provides the collection of datasets most commonly
employed by comparing classifiers. On the other hand’ s¢éveral studies apply different datasets in their
experiments. They can be artificial or private dataset§. as well as they can be obtained from other
sources.

Table 2.2: Statistical tests used to compare the performance of the MH-based approaches for DTL

Acronym Description Acronym’ Description

Avg Average of the results of each algorithm in several datasets t-test Paired t-test

WTL Counts of wins, ties and losses (Sign test) ANOVA  “Anpalysis of variance [116]
ARR Average ranks of the results of each algorithm in several datasets Tuk-t Tukey test [359]

Wil-t Wilcoxon sum of ranks test [385] Fri-t Friedmanest [128]
Nem-t Nemenyi test [262] BD-t Bonferroni=Runn test [94]
KW-t Kruskall-Wallis test [209] Hol-t Holm test [159]

Hom-t Hommel test [161]

251

Single-solution-based metaheuristics

Several SS-based MHs such as SLS, SA, TS, and GRASP have been applied to induce DTs. (These MH-
based approaches are commonly implemented within a recursive partitioning strategy. The timeling of the
S8-based MHs for DTI described in the existing literature is shown in Fig. 2.10. -

Axis-Parallel DTs: Bucy and Diesposti [51,52] implement a subsequent optimization strategy to improve

the performance of a previously induced DT. Starting with a fixed-length binary DT randomly created,
SA carries out two types of reconfigurations: 1) to swap two randomly selected test conditions, and 2)
to obtain a new DT by randomly reassigning all test conditions, or by keeping the test conditions of one
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Figure 210: Timeline of the $8-based MHs for DTL

tree branch intact, and randomly reassign the remaining ones. After each reconfiguration, a pruning
process is applied to remove infeasible sub-trees. Reconfigured DT is accepted as a new solution
through the Boltzmann criterion. A similac.approach called Simulated Annealing Classifier System
(SACS) to optimize a binary DT previously induced by the ID3 algorithm is detailed by Lutsko and
Kuijpers [240]. In this method, one'test condition is modified in each iteration. First, using a weighted
distribution previously defined, a tést gendition 4s selected, and then the attribute in it is swapped by
an unused attribute randomly chosen’, Finally, the altered DT is evaluated and then is accepted as a
new solution according to the Boltzmanfieriterion.

Folino er al. [118] describes the Cellular Genetie Programming algorithm coupled with Simulated An-
nealing (CGP/SA) as a global search strategy to exolve a population of DTs. Starting with a population
of trees randomly created, CGP/SA uses a cellular automaton [353] to place them in a two-dimensional
grid. Next, each DT is recombined with its best neighbor to generate two offsprings, and the best one
replaces the DT in the grid through the Boltzmann criterion. Another approach using a group of DTs
is described by Ahmed and Rahman [6], although in it there is no information exchange between the
solutions. First, the collection is initialized with all possible DTs with'three nodes. Then, for each DT,
SA is applied in a recursive partitioning strategy to select a near-optimal node (an internal node or a
leaf node) that will be added to the DT.

On the other hand, Pacheco et al. [279] implement a recursive partitioning strategy using GRASP to
find the near-optimal test conditions of a binary DT. In each iteration, instead 'of chobsing the attribute
with the maximum IG to use it in a test condition, GRASP randomly selects one attribute of a subset
of attributes with the highest IG values.

Oblique DTs: Several SS-based MHs have been used to build an oblique DT in a recursive partition strategy.

graphical description of these methods is shown in Fig. 2.11, where wix =8 is one hmerplane,

w is the vector of the hyperplane coetficients, x is the vector of attribute values, and 6 represents the

independent term in the hyperplane. Also, w* and x* are subsets of coefficients and attrib alues,
pectively, and w' is the new vector of coefficients produced by the MH.

Murthy et al. [261] introduce the Oblique Classifier 1 (OC1) method which applies a two-step progcess
to find a near-optimal hyperplane. First, it uses a deterministic rule to adjust the hyperplane coeffi-
cients, taking one at a time and looking for its optimal value. Next, it applies SLS to jump out of
this optimum local value. The induced DT is pruned by removing sub-trees whose impurity value is
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Figure 2.11: Methodsto build a new hyperplane using SS-based MHs.

less than a predefined threshold value” Also, an OC1 variant to induce an axis-parallel DT, known as
OCI1-AP, is described in Murthy er al. [260].

Heath et al. [154] describe the Simulated ‘Anniealing of Decision Trees (SADT) method that, starting
with a fixed initial hyperplane, applies. SA to adjust it and improve its fitness value. In each iteration
of the SADT method, SA modifiessone of the ‘hyperplane coefficients, which is randomly chosen,
to adjust the position of the hyperplage, This modification is accepted as a valid movement through
the Boltzmann criterion. Canti-Paz and Kamath [59] implement an OC1 variant known as the OC1-
SA method in which SA simultaneously/ modifies several-hyperplane coefficients, but in this case,
beginning with the best axis-parallel hypérplane found by the OC1-AP method. Cost-complexity
pruning method is applied to improve the predictive performance of the induced DT.

Lief al. [224] implement an LDA-based approachin the Linear Discriminant and Tabu Search (LDTS)
method. To find a near-optimal hyperplane, this method first tTandemly selects a subset of attributes
to build the hyperplane, and iteratively replaces an attribute in this subset with another one outside
it. This attribute is included in the subset only if it improves th€ IG, of the new hyperplane, and
the replaced attribute is added to the tabu list. Induced DT iarune@ applying the cost-complexity
pruning method. Also, Orsenigo and Vercellis [277] utilize TS in the discrete support vector DT
method (LDSDTrs), implementing a linear discrete support vector maching/LDSVM) as its splitting
criterion. A hyperplane in this method is modeled as a mixed integer linear ram, which is solved
using both the LDSVM and TS.

On the other hand, Bennet and Blue [26] describe a subsequent optimization<algorithm known as
Extreme Point Tabu Search (EPTS) modifying a DT previously inducai by the MSMT method [24]
with the aim of minimizing its misclassification error. The oblique DT is represe‘fm‘; a system
of disjunctive linear inequalities [25], and TS is applied in the pivoting procedure of«the, Simplex
method [77] used to solve this system. An attribute is inserted into the tabu list when it leavesthe basis
of the system. The neighbors used by TS are the nonbasic attributes of the linear constraints, and the
best neighbor is one that, when is considered as one basic attribute, improves the fitness valﬁ'q of the

hyperplane. > O

Soft DTs: Dvoiidk and Savicky [96] use SA to implema a subsequent optimization strategy in an approach
to find soft threshold values that are assigned to the test conditions of an axis-parallel DT previously
induced by the CART method. SA perturbs a subset of these values in each step of its iterative process.
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Discussion

The components of the 13 studies implementing an SS-based MH for DTI are shown in Table 2.3. In this
table 1s observed that only three studies use an aggregating FF and the remaining apply one uni-objective
FF. To the best of.ourtknowledge, the evaluation of candidate solutions with a multi-objective FF has not
been applied to this type'af DTI methods. In particular, seven seies use a splitting criterion such as IG and
the twoing rule as theirfitness measures, and six studies utilize performance measures such as ME and size.
Furthermore, this table alsoshows that the linear representation of candidate solutions only has been utilized
to build oblique DTs, and the matrix representation is applied in only sg TS-based approach [26] in which
an oblique DT is encoded as_asset of disjunctive linear inequalities. Finally, several strategies have been
implemented to generate the initial candidate solution: three studies create it randomly, and other works start
their search procedure with a previously induced DT.

Table 2.3: Components of $8-based MHgfor DTL

Stra- py pp MH - Studies Repr.  Fitness  p i) solution
tegy scheme measures
RP AP UF GRASP- Pacheco et al. (2012) [279] Tree 1G Anempty DT
AF  SA  -Ahmed & Rahman (2004) [6] Tree MEnSize  All posible DTs with three nodes
OB UF SLS -0C1 [260,261] Linear IG, MaxM, The best axis-parallel hyperplane found by the
SumM, SumV, OC1-AP method
Gini, Twoing
SA  -SADT [154] Linear SumM A fixed hyperplane
-OC1-5A[59] Linear Fwoing  The best axis-parallel hyperplane found by the
0OC1-AP method
TS -LDTS [224] Linear 1G A subset of attributes randomly selected from
the dataset
AF TS -LDSDTyg [277] Lincar s\ MEASepM A feasible hyperplane modeled as a linear
fixed integer problem and solved using a
tmincated B&B method
GS APUF S5A -GCP/SA[L18] Tree ME A sewol axis-parallel DTs randomly created
S50 APUF SA -SACS [240] Tree MDL A DPinduced by the ID3 method
AF  SA  -Bucy & Diesposti (1991) [51,52] Tree MEASize A fixed<length binary DT randomly created
OB UF TS -EPTS[26] Matrix ME A binary DTdnduced by the MSMT method
SF UF SA -Dvordk & Savicky (2007) [96] Tree ME A binary DT induged by the C5.0 method

The experimental analysis reported in these studies is described in Table 2.4. In thistable is shown that
ten studies use UCI datasets, and eight studies employ datasets from other sources. Eight studies implement
one k-fold CV as their sampling method, and three approaches apply an hold-out sampling method. The
experiments reported by Bucy and Diesposti [51,52] was carried out using all the instances*0t the datasets.
Accuracy, ME, and size are the performance measures adopted by six, seven, and eleven studies, respectively.
Four studies apply a statistical test to analyze their experimental results, and the LDTS method [224}\is the
only one conducting one post-hoc analysis. Finally, the C4.5 method, the OCI algorithm, and the CART
method have been used to compare the results got by several SS-based MHs. Other classifiers such ag§ kNN,
BP-NN, and SVM also have been utilized in the experimental studies conducted by some of these MHs.[ The
results generated by the KINN method and by the BP-NN algorithm are compared with those obtained by the
OCI1 method, and the results achieved by an SVM-based approach are contrasted with those yielded by the
LDSDTrs method [277]. In particular, Pacheco ef al. [279] implement a traditional DTI procedure using IG
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Table 2.4: Experimental analysis reported by SS-based MHs for DTL.

Stra- DT ; Datasets Sampling Performance Statistical
tegy type MH / Sipdies UCI other method measures tests Compared methods
RP AP GRASP -Pacheco et al. (2012) [279] 17 - 10-fCV  Acc, Size  Avg, WTL, Traditional method
-test
SA  -Ahméd & Rahanan (2004) [6] 17 - 104 CV  Ace, Size Avg  C4.5
OB SLS -0CI [260,26L] ? 2 10 CV Acc, Size - ID3, SADT, kNN, BP-NN
SA  -SADT[154 2 10fCV  Acc, Size - D3
-OC1-5A [59] 10 - 5-[CV  Acc, Size, t-test  CART, OC1, OCI1-ES,
2 Time 0C1-GA
TS -LDTS [224] 13 - 10fCV  ME., Size, Avg, Tuk-t, C4.5, CART, OCl,
Time ANOVA  QUEST. LTree
-LDSDT+s [277] 6 2 10fCV  Acc, Size, - C4.5,0C1, SVM,
Time QUEST. LDSDTgg
GS AP SA  -GCP/SA[118] 12 - HO ME. Size - 4.5
SO AP SA  -Bucy & Diesposti (1991} [51,52] - 3 FD ME, Size - Huffman
-SACS [240] -1 10 HO ME, Size - -
OB TS -EPTS[26] Send  5ICV ME - MSMT, FW
SF  SA  -Dvoidk & Savicky (2007) [96] - 1 HO ME - C5.0, CART

as its splitting criterion to compare the experimental results.achieved by their GRASP-based method.

2.5.2 Evolutionary algorithms

EAs are the most widely used population-based MHS for DTI. A" vast number of EA-based approaches
implement a global search strategy to find near-optimal"DTs, although recursive partitioning and subsequent
optimization strategies also have been implemented using EAs. GA and/GP are the methods most commonly
used to induce DTs. Furthermore, CEA, ES, and other EA-based approaghesalso have been applied for DTI.
A timeline of the EA-based approaches for DTI is shown in Fig. 2.12.

Genetic algorithms with linear chromosomes (LGA)

In the case of EA-based approaches for DTI, several types of chromosomes hav€ ‘been utilized such as
binary, integer, and real-valued chromosomes, as shown in Table 2.5. A list of genetic operators used in
these approaches is shown in Table 2.6.

In particular, the following procedure is commonly applied to construct a DT from a lineat chromosome:
First, the element in the initial locatiorgf the chromosome is used as the root node of the'DT. Next, the
remaining elements of the chromosome are inserted in the DT as successor nodes of those préevigusly added
so that each new level of the tree is completed before placing new nodes at the next level, in a sumilar to
the breadth-first search strategy. In the case of univariate DTs, the number of successor nodes of*angnirnal
node is calculated based on the domain of the attribute used in its test condition, and for a multivarﬂ;H)T,
each internal node has two successors nodes. This procedure is depicted in Fig. 2.13.

Axis-Parallel In: Kennedy et al. [185] introduce a global search strategy known as the Caltrop method

to evolve a population of DTs represented as a set of sub-trees. Each sub-tree with three nodes (a
caltrop) is encoded with a sequence of integers referring to binary attributes used as test conditions.

25




Differential-Evolution-based methods for inducing Decision Trees

P
A\ 4
199 1 1905 1997 1999 2001 2003 2005 2007 2000 2011 2013 2015
P
Axis Parallel ’/ Linear genetic algor
. Bram ECCO:
ICET: Tumey Bandar 1 i
1995 ctal. 1999 MEFDTI: e e
 Andrds & Smith, 2008 Vadera, 2012 )
Caltrop: Kennedy e Cha & umm"f &
AT Tappert, 2008 Jackowski, 2014
Tree based genetic algorith
Pmls(.r:h::g! mﬁ.‘&‘: " GEA-DT:Kretowski _ GDT-MA: Bosnjak
& Eokol E:rgdk & & Grzes, 2005 Kretowski, 2008 ctal. 2015
. 1998 les, 2000 -MC: Kretowski
7 & Grzes, 2007
Q0GASC4.5: Sorensen & Biedrzycky & ~ LEGAL-Tree: LEGAL-Tree:
Fu, 199 Janssens, 2003 Arabas, 2006 Basgalupy Basgalupy
JGAIT:Fu GAIT: Fu GAIT: Fu ctal. 2009 ctal. 2014
etal. 2000 ‘et al. 2003 etal. 2006
[ Genetie prog g CGP: Li EDDIE-101: Wang
| ctal. 2005 Nmsmimll ctal. 2014
Koza L Tbaetal = EMO:Kim  Kuo MGP: Wang
1991 1994 =t 2004 etal. 2000 1 )
vav, Tok Saremi &
Gl Kt Pham, 2000 Wanli, 2011 Yaghmae
3 . Johansson 2014
Eggermont Tsakonas & Niklasson
etal. 2003 2006 2009
. DHiIGP: Kining Dufourg &
EPTree: DeLisle Zhao ctal. 2010 Pillay, 2013
& Dizon, 2004 2007 Grammatical evolution
GEDT:
GPTree: empo Motsinger-
el al. 2005 Reifetal 2010
Gene expression progra
Ferreira GEPDT:
Rayward 2006 & Quetal
1998 2009
Cellular Wi
Folino et al. ctal. 2006
G v
Podgorckec MPGT:
»& Karakatic »F
20013 ctal. 2015
Aitkenhard
2008
[(OtSgmsDTs Linear genetic ——
BTGA: Chai OC1-GA: Clnm—P‘xz u Pangilian & Vakobeatovic &
etal. 1996 & Kamath, 2t Janssens, 201 1 Strubarik. 2015
towsky HBDT: Strubarik
2004 ctal. 2014
s GA-ODT:
= Kretowski &
Girzes, 2005
ce“"";d"'&" 8 GP-MM:
! Agapitos
Langdon, 2000 etal. 2011
E ¥
OCI-ES: Cantu-Paz MESODT:
& Kamath, 2000 Zhang etal. (2005)
 Non-linear DTs Linear genetic algorithm
GALE: (}A-QI!T
Llori & Ng
Garrel, 2001 Lr:ung, 2003
Genetic prog
Tackett Mermelstein & Mugambi & GIODet: Shali e
1993 Lamont, 1998 Hunter, 2003 etal. 2007 eul 2u|| oy
etal. 2010
[ Soft DTs Linear genetic algorithm = 5
Janikow Crockett GA+IFD3: GC-SDT: Shukla  LIVFDT: Sanz
1996 ctal. 1999 Chang et al. 2004 & Tiwari, 2009 etal. 2012
G-DT: Pedrycz & FVBDT:
Sosnowski, 2005 Yang, 2010
Kim &
Ryu, 2005
Genetic programming Gene expression programming
PFDT: Weihong
Eggermont 4, cambi ctal. 2010 —‘
2002 eral: 2000
[ DT pruning Linear genetic algorithm
Chen
ctal. 2009

Figure 2.12: Timeline of EA-based approaches for DTL
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Table 2.5: Linear ehromosome representation used by EA-based approaches for DTL

Type of
chromosome

Description

Linear chromosomes:

ChC A sequenteof characters

BinC A binary sequénce encoding integers through the base-2 numeral system

GrayC A binary sequenee encoding integers through the Gray code [31]

IntC An integer-valued-.¢hromosome

RealC A real-valued chrom@some

NumC A numeric-valued chromosome encoding integers and real numbers

Linear chromosomes for obligue D¥s;

PerpH A perpendicular hyperplang:“A real-valued chromosome encoding a hy perplane which is perpendicular to the seg-

ment connecting two instances with different class labels. This hyperplane cuts the segment into two parts with
diferent size

BisH A bisector hyperplane: A'perpendicular hyperplane cutting the segment into two equal parts

APH An axis-parallel hyperplane

Table 2.6: Genetic operators used by EA-based approaches of DTI.

Acronym Description Acronym Description

Selection operatars:

TouS Tournament-based selection RWS Roulette-wheel-based selection
ERS Ex ponential-ranking-based selection LRS Linear-ranking-based selection
TS Truncate-based selection AssM Assortative matting

SpeS Specialized selection

Crossover for linear chromosomes:

DPX Double-point crossover UnX Uniform crossover

ArX Arithmetic crossover SPX Single-point crossover

MPX Multiple-point crossover SpeX Speécialized crossover
Mutation for linear chromosomes:

BIM Bit-interchange mutation UnM Uniferm mutation

nUM Non-uniform mutation SpeM Speeialized mutation

Linear chromosome Decision Tree

T

AN \ /

‘/\-' L
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Figure 2.13: Mapping strategy to build a DT from a linear chromosome.

!
Furthermore, in other GA-based approaches, the chromosome encodes either the nodes U(@mplete
DT, or the elements used to build them: attributes, threshold values of the numerical attribufes, and
class labels. -

In the first case, Cha and Tappert [60, 61] encode both test conditions and leaf nodes in a sequengé of
integers. Each test condition evaluates a binary attribute represented by the index of its location iran
ordered list of attriffites, and each leaf node is encoded by an index randomly chosen from a list of
class labels. Also, in the method described by Bandar et al. [12], each test condition is represented
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by an’index identifying the attribute, either categorical or numerical, used in it. In this algorithm,
both the threshold values used in the internal nodes and the class labels assigned to the leaf nodes
of the ire determined by evaluating the training set. Each induced DT is pruned using the 22
test to determine the statistical significance of each test condition. A test condition is replaced with
a leaf node if“its'statistical significance is less than a threshold value. Finally, in the Evolutionary
Classifier with Cast Optimization (ECCO) method [274] introduced by Omielan and Vadera, a binary
chromosome encodes the set of test conditions of a complete DT through an index identifying each
possible test condition, te induce multi-branch cost-sensitive DTs.

On the other case, thdffvolutionary Algorithm for DTI (EVO-Tree) method, described by Jankowski
and Jackowski [174], and ghéywork of Smith [331] implement two similar approaches. Both construct
two arrays to encode the Memﬁ used by the nodes of a binary DT: one identifying both attributes
and class labels, and the other storing the threshold values. In Smith [331], a leaf node is represented
with 0 in the first array, and class labels are stored in the second array, and in the EVO-Tree method,
a leaf node is represented with a‘nul/*value in the first array and class labels are stored in the second
one.

With the aim of showing an example of the"GA-based approaches previously described, a complete DT
induced using a hypothetical training set.with three binary attributes and two class labels is depicted
in Fig. 2.14, as well as five linear chromosomes encoding it. This DT has three test conditions and
four leaf nodes.
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Figure 2.14: Linear chromosome representation of DTs.

An alternative encoding scheme named Multi-Expression Programming (MEP)* is applied by Andris
and Dumitrescu [9] in the MEP-based DTI (MEPDTI) method implementing a global search strategy
for DTL. In this method, the test conditions are encoded as functional symbols, and the\leat nodes are
represented as terminals. J

Although the GA does not encode DTs in the Inexpensive Classification with Expensive Tesls%]iT)

method described by Tumey [361], it is applied to induce cost-sensitive DTs. This method impléments

a globaﬁearch strategy evolving a population of biases’. In each generation of the ICET mé@,

4MEP [273] defines a linear chromosome composed of variable-length genes. Each gene encodes a terminal or a functiofial
symbol. Functional symbols contain functions that take as arguments the indices of other elements.
31In ICET, one bias is defined as the cost of measuring an attribute.
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the chrom6somes are processed by the EG2 method [271] to build binary DTs. Also, Bratu ef al.
[44] modify this approach by introducing elitism in the population and by adjusting several method
parameters:

Oblique DTs: GA-based approaches often use a linear chromosome to encode the hyperplane coefficients
used as test conditipn of one oblique DT that is induced through a recursive partition strategy. Chai
etal. [62,63] implement the Binary Tree-Genetic Algorithm (BTGA) encoding the hyperplane coetfi-
cients in a binary chromosome. Each hyperplane in the initial population is the perpendicular bisector
of two instances withrdifferent class labels randomly selected frca the training set. Furthermore, the
OCI1-GA method described by Canti-Paz and Kamath [58, 59] 1s an OC1 variant encoding the hy-
perplane coefficients in afreal-¥alued chromosome. First, it obtains the axis-parallel hyperplane that
best divides the training ir?ﬁancg, which is copied to 10% of an initial population whose remaining
elements are created at randem. Then, the OC1-GA method evolves this population to find a near-
optimal hyperplane. The induced oblique DT is pruned using the cost-complexity pruning method. In
a similar approach, Kretowski [203]\lises dipoles® representing hyperplanes also encoded with real-
valued chromosomes. The initial pepuldtion has a set of hyperplanes splitting mixed dipoles chosen
at random. Pessimistic-error pruning is applied to improve the performance of the induced DT. Also,
Pangilinan and Janssens [282] describewa’multi-objective GA-based method evolving a population
of real-valued chromosomes. This approach uses the selection operators of the Strength Pareto EA
(SPEA) algorithm [402] and the Nondominated Serting GA (NSGA-II) method [82].

Struharik ef al. [343] use an especial GA named HereBoy algorithm (HBA)” in the HereBoy for DT
(HBDT) method to find near-optimal hyperplanes.{The'hyperplane coefficients are encoded in a fixed-
length binary chromosome. The induced ‘BT is prumed by a reduced-error-based pruning method.
Vukobratovic and Struharik [373] also applies HBA in'thg Evolutionary Full Tree Induction (EFTT)
method to induce a full oblique DT using a variable-length-inear chromosome. In the EFTI method,
a DT is composed of several internal nodes connegted by pointers. Starting with one-node DT ran-
domly created, this method modifies the structuré™of the DT during its evolutionary process using both
topological mutations and hyperplane coetficient mutations.

Unlike the approaches detailed previously, where a recursive partitioning strategy is implemented, a
global search in the tree space is conducted in the Generalized Decision Tree Inducer (GDTI) method
described by Dumitrescu and J. Andrés [93], in which the MEP encoding scheme is used to represent
oblique-DTs.

Non-linear DTs: Llora and Garrell [229-232] and Llora and Wilson [233] implement the Genetic and Arti-
ficial Life Environment (GALE) method, a parallel EA-based approach to evolve a pppulation of DTs
placed in a two-dimensional grid. The trees in the population can be axis-parallél, oblique, or non-
linear DTs. In particular, non-linear DTs use hyper-spheres in their test conditions. The GALE method
uses several specialized operators such as the recombination and the partition operators tefodify each
DT based on the information of its neighbors, as well as the survival operator to remove'DTs with poor
performance and to prune the remaining DTs. On the other hand, Ng and Leung [265, 266]\introduce
the GA-QDT (GA-based Quadratic Decision Tree) method implementing a recursive partitioning)strat-
egy to find a near-optimal hypersurface used as test condition of a non-linear DT. Each hypersurface
is modeled as x” Ax+ b7 x = 8, where x is a vector of attribute values, A is a symmetric matrix;»his'a

6 A dipole is a pair of instances in the training set represented as vectors [34].
THBA [219] works with a unique binary chromosome evolving using a mutation operator.
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vector, and O is the independent term in the inequality. Each chromosome represents a hypersurface
by encoding the values of A, b, and 6.

Soft DTs: A GA<hased approach commonly used to induce soft DT is to evolve a population of parameters
describing the membership functions associated with the possible result values of the test conditions
in a soft DT. Fig (2,15 shows several types of membership functions used to induce soft DTs through
this type of appreaches.
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Figure 2.15: Membership functiens,tised to induce soft DTs through GA-based approaches.

The GA for Fuzzy ID3 (GA-FID3) methed, described by Chang et al. [65], and the work of Janikow
[173] implements two similar approachesiBoth encode in a real-valued chromosome the parameters
of the membership functions used in theftest'conditions of a soft DT, which is induced through a
recursive partitioning strategy. Jakinow encodes the corners of several trapezoidal functions, and the
mean and the variance of the Gaussian functionsy/as well as the threshold values used to assign leaf
nodes, are encoded in the GA-FID3 method.

The subsequent optimization strategy is.implemented in several GA-based approaches to induce soft
DTs. Crockett er al. [76] describe an algorithm to optimize,the piecewise linear membership functions
assigned to a DT previously induced by the ID3, algorithm., A real-valued chromosome encodes the
bounds of all membership functions used by‘thessoft DT. Pedrycz and Sosnowski [286] implements
a very similar approach in the Genetically optimized fuzzy DT (G-DT) method. Starting with a DT
previously induced by the C4.5 algorithm, this méthod evolves apopulation of binary chromosomes
encoding the parameters of the membership functions (piecewise linear or Gaussian) defining the fuzzy
regions associated with the test conditions in the soft DT. Furthermore, Sanz et al. [316] develop the
IIVFDT (Ignorance functions based Interval-Valued Fuzzy Decision Tree with genetic tuning) method
to improve the performance of a fuzzy DT previously induced with the Fuzzy-ID3 method [393]. This
method encodes the parameters used to weight the ignorance degree® for thetriangular membership
functions of each test condition in a real-valued chromosome.

On the other hand, Kim and Ryu [191, 192] implement a global search strategy to induce fuzzy DTs.
A chromosome in this approach encodes the parameters representing the triangulat membership func-
tions of all outcomes of the tree internal nodes.

DTI through clustering is also applied to build soft DTs with several GA-based approaches.yShukla and
Tiwari [326] implement a recursive partitioning strategy in the Genetically optimized Cluster,oriented
Soft DTs (GC-SDT) method to find near-optimal test conditions of a soft DT. A binary chromosome
encodes a set of prototypes (centroids) of the clusters representing groups of training instances (Fig.
2.16(a)). Furthermore, the Fuzzy Variable-Branch DT (FVBDT) method is implemented byﬁ’ang
[390]. This method finds the near-optimal number of sub-trees connected to each test conditionfof a
multi-branch DT. The number of occurrences of the bit 1 in a binary chromosome indicates the number
of sub-trees attached to the test condition (Fig. 2.16(b)).

8Ignurance degree guantifies the uncertainty to assign membership values in fuzzy sets when a classifier is being trained [56].
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Figure 2.16: Linear chromosome representation for clusters-based DTL

DT pruning: Chen er al. [66] describesa method to prune a previously induced DT by the ID3 algorithm. A
binary chromosome represents the'test'conditions of the DT. In this chromosome, a bit 1 indicates that
the test condition, and the sub-tree ass6ciated with it, will be removed.

Discussion

The components of the 36 LGA-based"appreaches toe-DTI described in the existing literature are shown in
Table 2.7. Eight studies implement an aggregating FE& and the remaining studies apply one uni-objective
FF. No study reports the use of a multi-objective FF in this_type of methods. Eleven studies employ some
splitting criterion as their fitness measure, and-the.test accuracy and the size are the fitness measures most
commonly utilized in those implementing either asglobal search™or one subsequent optimization strategy.
Some authors describe the genetic operators applying in their works, but others only report to use some GA-
library such as GENESIS [146], GENOCOP [246], and*GALib [374]. Tournament-based and roulette-wheel-
based selection operators have been implemented in eléven and seven studies, respectively. Furthermore,
both single-point and double-point crossover, as well as the bit-interchange and the uniform mutation are the
genetic operators most commonly applied by this type of GAs, although several authors create ad-hoc genetic
operators to ensure the construction of feasible DTs. In particular, bothsthe-HBDT method [343] and the
EFTI algorithm [373] alter its only one chromosome with a mutation operatorz/Finally, the initial population
in these LGA-based approaches is commonly constructed as a set of chromosomes randomly created. In
particular, the OC1-GA method [58] introduces several copies of the best axis-patallel hyperplane found by
the OC1-AP method in its initial population.

Table 2.8 resumes 36 experimental studies in the existing literature implementing some LGA-based
approach for DTL In this table is shown that 30 studies induce DTs from several UET datasets, and 14
methods from other datasets. 20 studies implement one k-fold CV to estimate the classifier, performance,
and ten studies use a hold-out method. The EVO-Tree method [174] is the only one performing®a 5 x 2 CV.
Both the Caltrop method [185] and the procedure described by Cha and Tappert [60, 61] @mploy the full
datasets to build the DTs in their experiments. The test accuracy in 25 studies, the ME in four methods, the
tree size in 17 procedures, and the MC in three algorithms have been computed to determine the perfarmance
of the LGA-based approaches. In particular, Pangilinan and Janssens [282] utilize the hypervolume.as, its
performance measure. 15 studies report the application of a statistical test to compare the results reached
by the LGA-based approaches with those produced by other classifiers. Only three studies apply a post-
hoc analysis after finding statistical differences in their experimental results: the Tukey test in the HBDT
method [343], and in the EFTI algorithm [373], and the Holm test in the IIVFDT method [316]. Finally,
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Table 2.7: Components of LGA-based approaches for DTL

Stra- ol a: Fitness Genetic operators . s .
tegy DT FF Studies measure  SEL Xover MUT Chromosomes in the initial population
RP OB UF -BTGA\62,63] Gini RWS DPX BIM  BisHs randomly created
‘OCI1-GA[SB, 59] Twoing  TouS UnX N/A  Hyperplanes randomly created with
several copies of the best APH found
by the OC1-AP method
Kretowski (2009):{203] Dipolar ~ RWS DPX  SpeM Hs randomly created
-Pangilinan & Janssgéns (2011) [282] Twoing  TouS ArX nUM  Hyperplanes randomly created with
one APH also randomly created
-HBDT [343] 1G N/A N/A BIM  One BisH passing through the centre
point of a set of training instances
NL UF -GA-QDT [265,266] Gini RWS DPX nUM  Quadric hypersurfaces randomly
created
SF UF -Janikew (1996) [173] 1IG Based on GENOCOP  RealCs randomly creared
-GC-SDT [326] SSRE TouS DPX BIM BinCs randomly created
AF -GA-FID3 [65] MeghSize - - - RealCs randomly created
-FVBDT [390] MEnSize RWS DPX BIM  BisCs randomly created
GS AP UF -ICET[361] MC Based on GENESIS GrayCs randomly created
-Caltrop [185] Size AssM SPX UnM  IntCs randomly created
-Bandar et al. (1999) [12] Acc - - - IntCs randomly created
-MEFDTI [9] Ace TouS DPX  SpeM IniCs randomly created
-Bratu et al. (2007) [44] MC RWS MPX UnM  GrayCs randomly created
«Cha & Tappert (2008) [60,61] Size - SPX UnM  IntCs randomly created
"ECCO [274] MC Basedon GENESIS BinCs randomly created
AF -Smith (2008) [331] ME# Tinte - - - IntCs randomly created
-EVO-Tree [174] MEnSize™ RWS SPX UnM  NumCs randomly created
OB UF -GDTI [93] Acc TouS  SpeX’  SpeM  IntC randomly created
AF -EFTI[373] AcchSize TN/A N/AL  SpeM A hyperplane of a one-node DT
NL UF -GALE [229-233] Ace SpeS SPX UnM  IntC randomly created
SF AF -Kym & Ryu (2005) [191,192] AcchSize RWS SpeX  SpeM RealC randomly created
SO AP AF -Chen etal. (2009) [66] MEASize RWS SPX BIM “BinCs randomly created
SO SF UF -Crockett etal (1999) [76] Acc Based on GENESIS Real@s randomly created
G-DT [286] ME Based on GALib RealCsrandomly created
JIVEDT [316] Ace TouS UnX UnM  RedlCsrandomly created

16 studies compare their results with those obtained by the C4.5 algorithm, and the OC1 method is used in
the experiments conducted by six studies inducing oblique DTs, and in seven studies construeting non-linear
DTs. In the experiments carried out by Pangilinan and Janssens [282], a procedure to indueé axis-parallel
DTs is utilized, but the authors do not indicate its name.

Genetic algorithms with tree-based chromosomes (TGA)

!
=

Although GA commonly uses linear chromosomes to encode candidate solutions, tree-based representation
also has been used to evolve DTs. In this case, a variety of specialized crossover and mutation operators-to
build valid offsprings have been implemented in several studies found in the existing literature. In this thesis,
one representative name is associated with each type of genetic operator to describe these operators. Table
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Table 2.8: Experimental analysis reported by LGA-based approaches for DTL

Stra- . Datasets Sampling Performance Statistical
tegy DT Studiey UCT other method measures tests Compared methods
RFP OB-BTGA [62.63] 1 3 3Icv ME, Size - TE PCA, FR
-0OC1-GA [58459 10 - 54CV  Acc, Size, -test  CART, OCI, OCI-ES, OC1-5A
Time
- Kretowski (20049°71203] 4 4 104CV  Acc, Size, - 0C1. OC1-GA
Time
- Pangilinan & Janssens (2011) [282] 6 1 5CV  Acc, Size, - AP, OC1
HV
-HBDT [343] 26 - 10ICV  Acc, Size  ANOVA, CART, OCI, OCI-AF, OC1-SA,
Tuk-t  OC1-GA, OCI-ES, GALE.
GaTree
NL - GA-QDT [265,266] 2 2 104CV  Acc, Time ttest  C4.5,C5.0, OCL, OC1-GA,
OCI1-ES. BTGA, LMDT, NDT
SF - Jakinow (1996) [173] = 1 HO Acc - -
-GA-FID3 [65] 5 - - Acc, Size - C4.5, RID3
-GC-5DT [326] 6 ¢ - " 54CV ME. Size t-test  C4.5, C-Fuzzy DT
-FVBDT [390] g 2% M-V Acc - MB, C-Fuzzy DT, [301], [391]
GS AP -ICET [361] 5 - HO MC, Time - C4.5, EG2, CS-1D3, IDX
-Caltrop [ 185] - 1 FD Size - D3
-Bandar et al. (1999)[12] - HQ Acc - -
-MEPDTI [9] LI - HO Acc - C4.5,CN2, BGP
-Bratu et al. (2007) [44] 3 - HO MC - (4.5, ICET, AdaBoost, MetaCost
Cha & Tappert (2008) [60,61] - 1 FD Size - -
-Smith (2008) [331] - 3 HO Time - -
-BCCO [274] 4 - HO MC - ICET
-EVO-Tree [174] 7 - Sx@EN  Ace.Size ARR  C4.5, RTree, NB, MLP, SVM
OB -GDTI [93] 1 - HO Acc - C4.5, CN2, BGP
-EFTI [373] 26 - 10FGMS Acc, Sizeg” ANOVA, CART, OCL, OCI-AP, OC1-SA,
Tuk-t  OC1-GA, OCI-ES, GALE,
GaTree, HDBT
NL-GALE [229-233] 11 - 10LCV Acc Avg ptest C4.5, CART, OCl
SF - Kym & Ryu (2005) [191, 192] 7 - - Acc, Size Avg [391], [2].
SO AP -Chen et al. (2009) [66] 4 - HO Acc, Size - b3
SF - Crockett et al. (1999) [76] - 2 HO Acc - D3
-G-DT [286] 5 - 5ICV ME - 45
-IIVFDT [316] 17 3 54CV Acc Avg, Fri-t, C4.5yGA+FID3, [191]
Hol-t, Wil-t

2.9 and Table 2.10 detail these types of crossover and mutation operators. Fig. 2.17 and Fig#/2: 8 shown a
graphical scheme of each one. Furthermore, the Table 2.11 shows the structure of the internal'nodes defined
in the studies with this chromosome representation.

Axis-Parallel DTs: Podgorelec and Kokol [291] introduce a GA-based approach implementing agglobal
search strategy for DTI. Papagelis and Kalles [283, 284] develop a similar approach named the GATree
(Genetically Evolved Decision Trees) algorithm. Kalles and Papagelis [182] describe how the retse
of fitness values previously calculated can improve the evolutionary process speed. Furthermore,
Sorensen and Janssens [333] implement an approach to induce complete binary DTs. Fu [129], Fu
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Table 2.9: Créssover operators used by tree-based chromosomes.

Acronym Opérator Description

58X Sub-tree swapping  Swaps a sub-tree randomly chosen of a DT and a sub-tree also randomly selected from another
DT.

NSX Node swapping Swaps a node randomly chosen of a DT and a node also randomly chosen from another DT.
The sub-trees of these nodes remain unchanged. This operator can be limited to be applied only
between internal nodes, or only between leaf nodes.

BSX Branch swapping Swaps a branch randomly chosen of a DT and a branch also randomly selected from another DT,
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Figure 2.17: Crossover operators used by treg*based chromesemes (Adapted from [283], [333], [132], [206], and [19]).

Table 2.10: Mutation operators used by tree-bagéd chromosomes.

Acronym QOperator Description

NDM

NSM

SSM
NIM
NRM

SEM

Node disturbance Modifies the elements of oné node randemlyjchosen from one DT. This operator can be applied
to the attribute or the threshéld'walue ofsene univariate test condition, with the values of one
multivariate test condition, orwithsthe classTabel of one leaf node.

Node swiiching Swaps two nodes randomly chosen from on€ DF«The sub-trees of the selected nodes remain
unchanged. This operator can be limited to be applied only with test conditions, or just with leaf
nodes.

Sub-tree switching ~ Swaps two sub-trees from the same DT, which are randomly chosen.

Node insertion ds a new randomly created node (leaf or internal node’ toa DT.

Node replacement eplaces one node randomly chosen from one DT. A sybrée can be replaced with a new leaf
node, or a leaf node can be replaced with a new sub-tree rafidomly created.
Sub-tree replacement Replaces one sub-tree randomly chosen from one DT with a new'sub-tree randomly created.

and Mae [134] and Fu et al. [130, 131] describe several versions of the GAIT"methdd. Fu er al. [132]
implement a probabilistic criterion in the fitness function and, with the aim of intseducing diversity in
population, two objectives are considered to select DTs that will be part of the next.geheration. Also,
another GAIT version with a fitness function using several percentiles of the accuragy diStribution is
developed by Fu et al. [133].

In the Global EA for DTI (GEA-DT) method, Kretowski and Grzes [206] use the dipolar representation
to encode the test conditions of a DT. Kretowski and Grze$ [208] use this approach for cost-sensitive
classification in the GDT-MC method, and by Kretowski [204] in the GDT-MA method, in wmh a
greedy local search procedure to improve the performance of the induced DTs is applied. Also, i@
method described by Biedrzycki and Arabas [29], the search space associated with the training setis
initially computed, and one GA is applied to evolve a population of DTs into this space.

Basgalupp er al. [21] introduce the Lexicographic Genetic Algorithm for Learning decision Trees
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Figure 2.18: Crossover operators usedby tree-based chromosomes (Adapted from [283], [333], [132], [206], and [19]).

(LEGAL-Tree), a multi-objective GA-based approach that builds DTs as a collection of decision
stumps (DSs)?. A lexicographic approach based on tolerance thresholds is applied to select as fit-
ness value either the accuracy or the DT'size, using a set of predefined priorities. Basgalupp er al. [19]
modify the LEGAL-Tree method to includéa-beam-search-based DTI method that is utilized to build
the initial population, and to apply 4 statistical test in the lexicographic selection instead of a set of
predefined tolerance thresholds.

On the other hand, to prevent the premature convergénce of the algorithm, Bosnjak er al. [40] introduce
diversity in the population utilizing a medified seléction operator: One DT is selected based on its
fitness value, and the other is chosen according to its leyel'of*similarity with the first.

Oblique DTs: Siegel [327] describes an approach,in which the fithess value of a DT is computed with a

subset of training instances. Each instance hasa value indi€ating the number of incorrect predictions
in the population. A tournament-based-selection operator is applied to build the subset of instances in
a pro known as competitive adaptation.

In the Global EA for oblique DTI (GEA-ODT) method described by k@towski and Grzes [205, 207]
a population of mixed DTs is evolved. The GEA-ODT method impléments a global search strategy to
find the structure of a DT as well as the hyperplane coefficients used in the test conditions. Further-
more, Gray and Fan [ 145] modify their regression tree induction approach, known as TARGET [144],
to induce near-optimal oblique DTs. TARGET implements elitism and immigtation (new randomly
created DTs are introduced in population) in its evolutionary process.

Discussion

The components of the TGA-based approaches for DTI previously described are shown in Table 2+12. Both
uni-objective and aggregating FFs have been used in ten studies each one, and a multi—objectivt’ F that

implement a lexicographic ordering criterion is utilized in the LEGAL-Tree method [21]. Test,aecuracy
and size have been employed as fitness measures in 18 and 12 studies, respectively. Roulette—wheeﬁased

selection is used in seven studies, and both tournament and linear-ranking-based selection operators have
been implemented in five studies each one. All TGA-based approaches for DTI apply the sub-tree-swappifig-
based crossover operator, but both the node-swapping and the branch-swapping-based crossover operators

9 A decision stump is a DT with one test condition and two leaf nodes
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Table 2.11: _Structure of the internal nodes encoded by one tree-based chromosomes.

Study Branching type Internal node

Auxis-parallel DT:

-GAIT [129-134) Binary A numerical attribute is compared with a threshold value produced by the
C4.5 method.

-GATree [283,284] Binary One categorical attribute is compared with only one possible value. A nu-

merical attribute is compared with a threshold value (this value is modified
by the mutation operator).

-Sdrensen & Janssens (2003) [333] Binary Only binary attributes are evaluated.

-GEA-DT [206], GDT-MC [208], Multi-branch A numerical attribute is compared with a threshold value (this value can be

GDT-MA [204] mutated). A branch is associated with each possible value of a categorical
attribute.

- Biedrzycki & Arabas (2006) [29] Multi-branch A branch is associated with each possible value of each attribute.

-LEGAL-Tree [19,21] Multi-branch A numerical attribute is compared with a threshold value defined using the
1G criterion. A branch is associated with each possible value of a categorical
attribute.

Obligue DT:

-Siegel (1994) [327] Multi-branchs™ Several categorical attributes can be used in one test condition, and a branch
can be associated with several attribute values.

-TARGET [144], GEA-ODT [205] Binary A lingar combination of attributes is used in one test condition.

-GDT-Mix [207] Multi-branch  Test conditions can use one or more attributes. For a univariate test condi-

tion,al a numerical attribute is used, it is compared with a threshold value.
Otherwise, a sub-tree is associated with each value of a categorical attribute.
For a multivagiate test condition, a linear combination of attributes is used in
the test conditions

also have been used in seven and five studies, respéctively: Furthermore, several mutation operators have
been implemented with this type of EAs. In particular, the methtd«described by Biedrzycki and Arabas [29]
does not apply a crossover operator, and it only uses”@ynode-insertion-based mutation to alter the initial
DTs. Finally, the random creation of chromosomes is*the most common scheme used to build the initial
population of this type of approaches, although other procedures also_have been utilized. In particular, the
GAIT method [130] uses the C4.5 method with several instances randomly chosen from the training set to
build its initial population, and the LEGAL-Tree method [21] generates it based on a random combination
of several decision stumps previously created.

Table 2.13 shows the experimental studies reported in the existing literatures4mplementing some TGA-
based approach for DTL. From this table is observed that 15 studies induce DTs.using UCI datasets, and 16
studies utilize other datasets. 12 studies implement one k-fold CV, and nine studies apply a hold-out sampling
strategy to compute the classifier performance. Test accuracy is calculated for 19 TGA-based methods, 16
studies estimate the size of the induced DTs, and two algorithms determine the misclassification error. Both
the technique described by Bosnjak er al. (2015) [40] and the LEGAL-Tree method adopp-the F-measure as
their performance measure, and only the GDT-MC method [208] implements a cost-sensitive glassification
approach. Ten studies compare their experimental results with those obtained by the C4.5 method. In
particular, Podgorelec and Kokol [291] implement a traditional DTI method, without specifyingits name,
and the results obtained by the GDT-MA method [204] have been compared with a basic evolution
of it, named the GDT-AP method by its authors. Finally, nine studies describe the applicationof a s
test to compare their experimental results with those obtained by other approaches, and only the L
Tree method applies one post-hoc analysis.
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Table 2.12: Compenents of TGA-based approaches for DTL

:L'; DTFF Studies ;;';‘::e SEL r'e';;;i:"em“i‘ﬁUT Chromesomes in the initial population
GS AP UF -0O0GASC4.5[129] Ace - SSX NSM DTs induced by the C4.5 method
with a subset of randomly chosen
training instances
‘GAIT [130=134] Acce  RWS S8X SSM DTs induced by the C4.5 method
with a subset of randomly chosen
training instances
-Seirensen & Janssens(2003) [333]  Ace  RWS SSX,NSX NSM, SSM Complete binary DTs randomly
created
Bosnjak et al. (2015) [40] Acc.  TouS S§8X NDM DTs randomly created
Size, FM
AF -Podgorelec & Kokol (1998) [291]., MEASize ERS S8X NDM DTs randomly created
‘GATree [182,283,284] AcchSize - S8X NDM DSs randomly created
‘GEA-DT [206] AgedSize LRS  S§SX, NSX, NDM, NSM, DTs randomly created
BSX NRM, S5M
Biedrzycki & Arabas (2006) [29] MEASize TouS N/A NIM Empty DTs
‘GDT-MC [208] MC/8ize LRS SSX, NSX, NDM, NSM, DTs randomly created
BSX. NRM. S5M
-GDT-MA [204] Acc/Size-lRS  SSX, NSX, NDM, NSM. DTs induced with 10% of the train-
BSX NRM, S5M ing set using several splitting crite-
ria (IG, GR, Gini and Dipolar)
MF -LEGAL-Tree [19,21] Ace, ... Toud S8X NEM DTs created with a random combi-
Size nation of several DSs previously in-
duced with 10% of the training set
OBUF -Siegel (1994) [327] Acc® _TouS SPXSSX N/A -
"TARGET [145] ME = RWS SSX,NSX_NDM, NSM DTs randomly created
AF -GEA-ODT [205,207] AccASize ERSSSX, NSX, NDM, NSM., DTs randomly created

BSX NRM, S§M

Genetic programming (GP)

In DTI through GP, internal and leaf nodes can contain different elements and‘'they can have distinct mean-
ings. Table 2.14 describes the structure of the nodes used in the GP-based approaehes for DTI. The ramped
half-and-half (RH&H) criterion described by Koza [202] is the most used procedureto build an initial popula-
tion of candidate solutions. RH&H creates trees having a wide variety of sizes and shapes based on a variable
height that ranges between two and one maximum value previously specified. The sub-tree-swapping-based
crossover operator and the sub-tree-replacement-based mutation operator are typically“applied by the GP
algorithm, although the node-perturbation operator is also used.

Axis-Parallel DTs: Koza [200] proposes to encode DT with S-Exps: the internal nodes as functions and the
leaf nodes as terminals. These expressions are used by Iba ef al. [171] and by Tiir and Giivenir [360].
Function and terminal sets are also used to encode DTs by Tsang et al. [357] in the Evolutionary Dy-
namic Data Investment Evaluator (EDDIE) system, by Wang et al. in both the Memetic GP'(MGP)
algorithm [375] and in the EDDIE-101 approach [377], and in the work of Niimi and Tazaki\[267].
In particular, the EDDIE system encodes its leaf nodes as terminals with indicators of financial fore-
casting, and in both the MGP algorithm and the EDDIE-101 approach the class label in a leaf nodeds
replaced by one record of instances reaching the node, grouped by their class label. Also, the EDDIE-
101 approach implements a local search to improve the threshold values of each test condition, and

37




Differential-Evolution-based methods for inducing Decision Trees

Table 2.13: Experimental analysis reported by TGA-based approaches for DTL

Stra- . Datasets Sampling Performance Statistical
tegy DT Studiey UCT other method measures tests Compared methods
GS AP - Podgorelec & Kokol (1998) [291] - 1 HO Ace, Size - Traditional DTI method
-O0GASCH5129] - 1 HO Acc, Time - SampleC4.5
-GATree [283,284] 13 5 54CV Acc, Size Avg C4.5, IR
-GAIT [130, 134 - 1 HO Ace, Time - C4.5
-Siirensen & Janss€ns (2003) [333] - 1 - Acc - -
-GAIT [131] - 1 HO Ace, Time L-test LR
-GAIT [132] 1 2 HO Ace, Size, Time t-test C4.5
-GEA-DT [206] 8 3 1LV Acc, Size - C4.5
-GAIT [133] 3 2 HO Acc, Size t-test C4.5
-Biedrzycki & Arabas (2006)129] 4 2 10HCV ME, Size - ID3, J48
-GDT-MC [208] 13 - 10fCV MC, Size Avg C5.0, CSI48, MetaCost
-GDT-MA [204] 15 - 10fCv Ace, Size - C4.5, GDT-AP
-LEGAL-Tree [21] [ - lofcv Acc, Size t-test J48
-GATree [182] 2 - 54 CV  Acc, Size, Time - J48
-LEGAL-Tree [19] Ie™ o 104 CV  Acc, FM, Size, Fri-t, Nem-t J48, CART, GALE
Time
-Bosnjak et al. (2015) [40] 20 ¢ HO Acc, Size, FM KW-t  GATree
OB - Siegel (1994) [327] - 1 HO Acc - -
-GEA-ODT [205,207] w5 Mofcv Acc, Size - C4.5, 0C1
-TARGET [145] 32 10-LEW ME, Size - CART, RPART, QUEST,
CRUISE, RF

Niimi and Tazaki [267] construct the initial populatiofi of DTs utilizing the Apriori algorithm [4].

A simple scheme to represent DTs is applied in"the Evolutionary Multi-objective optimization (EMO)
approach described by Kim [188, 189]. EMO.4s,based” on the multi-objective GA (MOGA) non-
dominated rank method introduced by Fonseca and Fleming (1993) [119]. Furthermore, in the multi-
objective GP (MOGP) method detailed by Wang' et al. [376] a-population of DTs evolves to find
Pareto-optimal solutions. This method implements four multi-objeetive methods based on the NSGA-
IT method [82], the multi-objective evolutionary algorithms based ondecomposition (MOEA/D) method
[397], the approximation-guided evolutionary multi-objective (AGEMOA) method [48], and the multi-
objective selection based on dominated hypervolume (SMS-EMOA) method [27], respectively.

Some GP-based methods introduce specialized operators to build feasiblesoffsprings. In the GP for
DT (GPDT) method described by Nikolaev and Slavov [268, 330], a mutation‘operator implements a
depth-first search strategy to alter each visited node based on a mutation probability, and Ryan and
Rayward-Smith [314] applies a modified crossover operator in which each offspfing is refined using
the training set. Furthermore, Kuo et al. [210-213] uses one operator to eliminate redundant sub-trees,
and other to remove subsumed sub-trees, and Dufourg and Pillay [92] use an encapsulation operator
to preserve sub-trees in the population. Finally, a migration operator is applied by Folino‘er al. [117]
to periodically swap DTs placed in the cells of a bidimensional grid in the Cellular GP method, and by
To and Pham [352] to exchange chromosomes between sub-populations evolving in an island-based
parallel GP.

Several modifications in GP-based approaches for DTI have been implemented with the aim to avoid
and to improve the GP performance. Koénig et al. [197] introduce an adaptive fitness function, to
include diversity in a population of DTs and for controlling the DT size, in the DT Injection GP
(DTiGP) method. First, a fitness value of a DT induced with a subset of instances randomly chosen
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2
fromethe training set is designated as a reference value. Next, the evolutionary process begins and,

at evefl infervals, the fitness value of the best DT in the population is compared with the reference
value. I4fs fitness value is less than the reference value, the fitness function is modified to allow
larger DTS(‘ﬁﬂr;hermDre, Yi and Wanli [392] implement the multiage GP (MGP) method to evolve
groups of m_cording to their number of leaf nodes (ages). The MGP method first divides the
population of DT tsing their ages and then evolves each group independently. Finally, these evolved
groups are CDmE'IDﬁE build a new population that will be used in the next iteration of the method.
This division allows to limit the selection pressure in a particular area (group) and tries to prevent that
netic operators destrpy, the continuity of the evolutionary process.

Other GP-based methods #61DTI build their trees without using the function and terminal sets. Shi-
rasaka ef al. [325] define DT as a list of nodes each one with references to one predecessor node
and two successor nodes. To induce more compact DTs, Zhao and Shirasaka [400] evaluate several
alternatives such as controlling the DT size in the selection process and deleting redundant nodes and
sub-trees. Oka and Zhao [272] applysthe C4.5 method with segments of the training set to build the
initial population. Tanigawa and Zhao [348] employ GP to induce small sub-trees that combine to
build a complete DT. Furthermore, Haruyama and Zhao [152] implement three multi-objective meth-
ods based on the vector evaluated GA (VEGA) method [319], the Pareto ranking algorithm [143], and
the Niched-Pareto GA (NPGA) method [164], respectively. Furthermore, DeLisle and Dixon [84] in
the Evolutionary Programming Tree'(EPTree) as well as Buontempo er al. [53] and Wang er al. [380]
encode a DT as a linked structure. Rouwhorstiand Engelbrecht [311] and Engelbrecht er al. [101]
implement the Building Block approaghifor GP (BGP) in which a DT is encoded with building blocks
representing test conditions. Starting with a populatien of decision stumps, the BGP method adds new
nodes in each one. BGP also applies one pperator to prune the evolved DTs. A very similar encoding
scheme called full atomic representation isdescribed by Egegermont er al. [99, 100] in which a popula-
tion of DTs evolves through a multi-layered fitness function consisting of two ranked fitness measures.
The authors first utilize an information-theory-based splittig eciterion [99], and then they develop a
refined atomic representation including minimum and maximum#values for numerical attributes [ 100].
The bounds of each numerical attribute in the training set are determined with a k-means clustering
method [337].

Additionally, discrettion of real-valued attributes also has been implemented in several GP-based
approaches for DTI: The GP Evolved Intervals (GPEI) method described by Dufourq and Pillay [91]
includes an adaptive discretization with both fixed and varying numbef of/intervals. Also, Saremi
and Yaghmaee [317] implement specialized operators modifying thresholﬁ@es used to divide the
attribute values.

On the other hand, GGP and TGP have been implemented in several DTI approaches. The Financial
Genetic Programming (FGP) method described by Li [220] and by Tsang and Li~{356] represents
DTs through a BNF grammar. In the Constrained GP (CGP) method, Li et al. [222}“implements
cost-sensitive classification using the same representation. Tsakonas [355] uses a similap@rammar to
describe DTs in his Grammar-guided GP (G3P) method. Moreover, Johansson and Niklasson [177]
and Johansson et al. [178] find near-optimal DTs in a GGP-based method using an oracle data'?, to
improve the performance of their induced DTs. Also, Johansson et al. [176] describe several strat€gies
to select a candidate solution in a population of DTs. .

oshgoftaar er al. [187] and Khoshgoftaar and Liu [186] implement a TGP in a multi-objective

10 An oracle data is a set of test instances together with their predictions (class labels) obtained using another classifier method
(ANN or RF).
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methed te evolve a population of DTs. Khoshgoftaar ef al. [187] use a method based on the Constraint
Orientéd Fransformation approach [102] in which an objective is initially chosen to be minimized and
the othe‘ﬂﬂ‘]'@tives are transformed into constraints. Khoshgoftaar and Liu [186] apply a NSGA-
based method [336] to optimize MCs, resource availability, and DT size. Crossover and mutation
operators are«dpplied considering the constraints impossed by data types. Furthermore, Zhao [399]
uses the TGP for DTLin a MOGA-based approach to implementing an application allowing for the
decision maker to.8pecify partial preferences on conflicting objectives such as false negative versus
false positive, sensitivity*versus specificity, and recall versus precision.

Oblique DTs: Bot and Langdon'(2000) [41,42] apply TGP to encode the hyperplanes used as test conditions

in an oblique DT. They analyzesthe use of one limited error fitness [ 140] to reduce the evolution time, as
well as the implementation'of twoamulti-objective methods: the NPGA method, and the Pareto scoring
with fitness sharing algorithm/{143]. Furthermore, Liu and Xu (2009) [228] apply GP to induce DTs
from multiclass datasets. The ¢hromosomes are grouped in sub-ensembles evolving independently.
Each sub-ensemble tries to solve a~two-class problem from the dataset. The better DTs in the sub-
ensembles are combined to build a finabmulticlass DT. Several methods to solve the problems arising
in the fusion of sub-ensembles are implemented in this work, as well as a greedy algorithm to keep
high diversity in the sub-ensembles. Finally, a GGP-based method to find near-optimal hyperplanes is
implemented by Agapitos et al. (2014) [3]\n the GP hybridized with Margin Maximisation (GP-MM)
method. This method also uses a/(14 1)-ES to maximize the margins associated with the hyperplane.

Non-linear DTs: Shali et al. [323] in the GPfor Induction of Oblique Decision Trees (GIODeT) method,

and Marmelstein and Lamont [241] describe two.similar GP-based approaches implementing a re-
cursive partitioning strategy to find a near-optimal hypersurface in each test condition of a non-linear
DT.

On the other hand, a global search of non-linear DTs also’hag’been implemented in several GP-based
approaches. The representation scheme introduced by Koza f200] is used by Tackett (1993) [345].
Furthermore, the Unconstrained Decision Trees EA (UDT-EA)method implemented by Wang ef al.
[377] induces non-linear DTs with hypersurfaces as test condifions,-and Mugambi and Hunter [255]
use TGP in a multi-objective approach that evolves a population of DTs to find Pareto optimum values.
Finally, Trujillo er al. [354] adapt the NeuroEvolution of Augmenting Topologies (NEAT) algorithm
[329] in the neat-GP method to maintain the distribution of the size of the trees in the population close
to one uniform distribution.

Soft DTs: Eggermont [98] applies his full atomic representation in the fuzzy-GP method to evolve a popu-

lation of soft DTs with triangular membership functions. Moreover, Mugambi er al [256] use SGP in
the Polynomial-Fuzzy DTs (PFDT) method to find near-optimal hypersurfaces of @ non-linear DT. The
PEDT method 1s based on a multi-objective GP [309] that evolves polynomials representing the hy-
persurfaces, as well as sigmoid and bell-shaped membership functions associated withsthe numerical
attributes of the dataset.

Discussion

Table 2.15 shows the components of GP-based approaches for DTI. 43 studies in the existing literature
implement a standard GP, eight studies describe the construction of DTs with one grammatical-based GP, and
the strongly-typed GP is applied in seven studies. In this Table can be observed that 25 studies implement
an uni-objective FF, 14 use an aggregating FF, and the remaining studies evaluate a multi-objective FF.
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Table 2.14: Structure-of internal and leaf nodes used in GP-based approaches for DTL

Study

Internal node

Leafl node

Axis-parallel DT:

Koza (1991) [200]

Tha etal. (1994) [171],

Tiir and Giivenir (1996) [360]
‘Nikolaev & Slavov (1997) [268];
Slavov & Nikolaev (1998) [330]

‘Ryan & Rayward-Smith (1998) [314]

"EDDIE [357], FGP [220,356]

-Kuo et al. (2006, 2007, 2008) [210-213]

Khoshgoftaar et al. (2003) [187],
Khoshgoftaar & Liu (2007) [186]
-Zhao (2007) [399]

-Johanssen & Niklasson (2009) [176,177],

Johansson et al. (2011) [178],
DTIiGP [197]

MGP [375], EDDIE-101 [377],
MOGP [376]

-Shirasaka et al. (1998) [325],
Zhao & Shirasaka (1999) [400],
Oka & Zhao (2000} [272],
Tanigawa & Zhao (2000) [348],
Haruyama & Zhao (2002) [152]

BGP[101,311]

Niimi & Tazaki (2000) [267]

-Eggermont et al. (2003, 2004) [99, 100]

‘EPTree [84], GPTree [53, 380],

To & Pham (2009) [352], EMO [ 188, 189]

An attribute as a function with several arguments

An attribute as a boolean function

A categorical attribute or a discretized numerical

attribute
Afcategorical attribute
{if-then-else,n, V, =, >, <}

{if-thien, if-then-else, h, W, =, >, <, =, <}

{if.<d or aclass label

{if. > <. f

{if-dhenelse,n, v, -, >, <, =}

A class label
A class label

A class label

A class label

An attribute, a class label or a
numerical value

A class label or an attribute

An attribute or a numerical value

An attribute, a class label, or a
numerical value
An attribute, a class label, or a
numerical value

1 representing positive and 0
representing negative.

Each rodeds.a-tuple'{s, label, P R, C, size} where t is the node number, label is the
class label 0€a leaf nodel P is,a pointer to the parent. L and R are the pointers to the left
and the right children. € 19 sef6f counters. For an internal node, n = C[0] and a = C[1]
and a decision'is made based on.the.comparison (attribute, < a). For a leal node, C[i]
is the number offraining samples of the i-th class, which are classified to this node. The
class label assigned is determined by majority voting. size is the size of node when itis

considered as a sub-pee.

A building block {a, ovalf} where a is @h attribute, ¢ is a threshold value, and 0 € {=, &,

<, <, >, >} is a mathematical operator.

A conditional sentence.

A categorical attribute, or a numerical attribute

compared with a threshold value

A numerical attribute compared with a threshold

value

An attribute or a class label
A class label

A class label

Obligue DT:
-Bot & Langdon (2000) [41,42]

Liu & Xu (2009) [228]

A label indicating the number of attributes in the

linear combination (1, 2 or 3)

{=. <, % —. 4, max, min}

Afclass.Jabel, a numerical value
or 4n fnleger representing an
attribuite

An attribute’or a numerical value

Non-linear DTs:
Tackett (1993) [345]

-Marmelstein & Lamont (1998) [241]

.GIODeT [323]
UDT-EA [377]

-neat-GP [354]

if-then-else, +, —, =, %}
+, =, X, +, <}
t, = = I L <A, V)

——

{4, —, %, =+, sin, cos, exp, /, &', |x], if }

if-then-else, +, —, =, AV, o, =, <, 2, <,

1A

An attributeOr'a aumerical value
An attribute of a_ntmerical value
An attribute or a\pumerical value
An attribute, a clasgTabel or a

numerical value
An attribute S\

Soft DTs:
-fuzzy GP [98]

A Tuzzified numerical attribute, or a categorical

aftribute

e

A class label
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The test acetracy and the DT size are the fitness measure most commonly applied to these methods: Test
accuracy in 32 gtudies, and the DT size in 28 works. Also, the misclassification cost is assessed in 12
studies. The téufnament-based selection is the prominent selection operator for this type of methods since
it is applied in 38 studies. Furthermore, sub-tree swapping and sub-tree replacement are the crossover and
mutation operators nost commonly implemented in these approaches. Other mutation operators such as
node disturbance andinode replacement also have been applied to alter the structure of one induced DT. The
random creation of the imitial population and the ramped half-and-half method are applied to generate the
initial candidate solutions’ in 25 and 23 studies, respectively. Some studies apply alternative strategies to
create the initial population® teqse the C4.5 method with a collection of instances randomly chosen from the
training set [272], to create deeisien stumps [311], and to map DTs from the rules created with the Apriori
algorithm [267].

Table 2.16 shows the elements of the experimental studies carried out by the GP-based approaches for
DTI previously described. In this'tabless shown that 33 studies induce DTs from several UCI datasets and
31 studies use datasets from other sous€es. 24 studies implement one k-fold CV, and 30 studies apply a
hold-out sampling strategy. Shirasaka er'aly[325], To and Pham [352] and Zhao [399] use the full datasets
to compute the performance of their algorithms? The method described by Liu and Xu [228] is the only one
implementing the LOOCV as its sampling method. Test accuracy, size, and ME are adopted as performance
measures in 38, 18 and 11 studies, respectively, . The MGP method [375] and the MOGP algorithm [376],
as well as the study described by Zhao [399], estimate the AUC value. Also, MC, Sen, Spe, Fid, and the
ROC curve analysis have been utilized as-pgfformance measures in several GP-based approaches for DTL
Furthermore, 11 studies carried out a statisticaltest to compare their experimental results with those obtained
from other methods, and four studies implément, some (post=hoc analysis: the Nemenyi test is used in the
studies described by Johansson and Niklassonrf177], Johansson et al. [176] and Johansson ef al. [178], and
the Bonferroni-Dunn test in the studies of Johanssoi'and Niklasson [177], Johansson er al. [ 178], and Trujillo
et al. [354]. Finally, the results produced by the C4.5 'method and-the J48 algorithm have been contrasted
with those obtained by 24 and six studies, respectively. The results of the NB method are compared with
those obtained by six GP-based approaches, and the results of the SVM method with those reported in two
studies. Also, the results of several ANN-based methods are confrontedwith the results of four GP-based
methods, and the results obtained by the kNN algorithm with those calculated by the CGP method [222].
In particular, the MGP method implemented by Wang er al. [375] is compared with the GGP (G-mean GP)
and EGP (Entropy GP) methods. These methods are variants of the MGP-meéthod developed by the same
authors.

Other EA-based approaches for DTI

Evolutionary strategies:nfantli—Paz and Kamath [58, 59] develop the OCI1-ES algorithm and Zhang er
al. [396] introduce the Multimembered ES Oblique DT (MESODT) method to obtain'a near-optimal
hyperplane using the (1 + 1)-ES and the (pt, 1)-ES, respectively. The OC1-ES algorithingfiodifies the
best hyperplane found by the OC1-AP method, and the MESODT method creates an initial'population
based on a hyperplane constructed by an ANN-based approach described by Unnikrishnafiand Venu-
gopal [363]. In both methods, an oblique DT is induced in a recursive partitioning strategy, @nd it is
pruned with the cost-complexity pruning method. -

Co-evolutionary algorithms: Several versions of a competitive-CEA-based method are described by Pod:
gorelec and Kokol [292-294], Babié ef al. [11], and Sprogar ef al. [335] applying a tree-based chro-
mosome representation with GA to build axis-parallel DTs using three independent populations com-
peting to find a near-optimal DTs. One population is a single DT induced by the C4.5 method, and the
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Table 2.15: Compenents of GP-based approaches for DTL

Stra- . Fitness Genetic operators Chromosomes in the
tegy DT FF My Sipdies measure  SEL Xover MUT initial population
RP NL AF GP -Mamnelstein & Lamont (1998) [241] MEASize  TouS SSX SEM S-Exps randomly created
-GIODeT [323] GRASize  TouS SSX SEM  ExpTs randomly created
GS AP UF GP -Koza (1991) [200] Ace TouS SSX SEM -
dba etall (1994) [171] MDL TouS S5SX NREM, SEM S-Exps randomly created
‘GPDT [268,330] MDL RWS 5SX SpeM  DTs randomly created
-EDDIE [357] Ace TouS BSX SRM -
Shirasaka et al1998) [325] Acc TruS SSX NDM -
-Cellular GP [1¥7] ME SpeS  SSX SRM  DTs randomly created
Zhao & Shirasaka(1999)'[400] Acc TruS  S8X NDM  DTsrandomly created
-Oka & Zhao (2000%1272] Acc TruS SSX NDM  DTs created using C4.5
Tanigawa & Zhao (2000),§348] Ace TruS  SSX NDM  DTs randomly created
-BGP[101,311] Acc TouS SSX NDM  DSsrandomly created
Niimi & Tazaki (2000) [267] Acc TouS SSX SRM  DTs created using Apriori
-EPTree [84] MDL TouS 5SX NDM, SEM DTs randomly created
-GPTree [53,380] Acc TouS SSX NDM, SRM DTs randomly created
To & Pham (2009) [352] Acc TruS  SSX N/A DTs randomly created
GPEI [91,92] Acc TouS 5SX SEM  RH&H criterion
GGP-FGP [220,356] Acc TouS SSX SEM  RH&H criterion
Johansson et al. (2010) [176] Acc RWS 88X SEM RH&H criterion
AF GP -Tiir & Giivenir (1996) [360] AceSize - 88X SRM  DTsrandomly created
Ryan & Rayward-Smith (1998)[314] MEAS1ze - SpeX N/A DTs created using C4.5
‘Kuo et al. (2006-2008) [210-213] Acc/ASige RWS SSX SRM DTs randomly created
-DTiGP [197] MEASizes” RWS S8X SRM  RH&H criterion
-MGP [392] AcchSize - - - DTs randomly created
‘MGP [375] IGASize © fToud S5SX SpeM  RH&H criterion
‘EDDIELOL [377] IGASize TS, SSX SEM  RH&H criterion
Saremi & Yaghmaee (2014) [317] AcchASize  TouS SSX NDM, SEM DTs randomly created
GGP-CGP [222] AceAFPR  Tou§" S8X SRM  RH&H criterion
G3P [355] AcchSize  TouS [SSX SEM DTs randomly created
Johansson & Niklasson (2009) [177], AccASize RWS SSX SRM RH&H criterion
Johansson et al. (2011) [178]
MF GP -Haruyama & Zhao (2002) [152] Acc, Size TouS SSX NBM  DTs randomly created
-Eggermont et al. (2003) [99, 100] ME, Size  TouS SSX SEM RH&H criterion
‘EMO [ 188, 189] ME, Size  TouS SS8X NDM, _ DTs randomly created
SEM. NEM
-MOGP [376] Sen, FFR  TouS SSX SpeM™ RH&H criterion
TGP: Khoshgaftaar et al. (2003) [187], ME, Size  TouS SSX SRM [ RH&H criterion
Khoshgofiaar & Liu (2007) [186]
Zhao (2007) [399] FPR,FNR, TouS SSX SEM DTs gandamly created
Sen, Spe. P
OB UF GP -Liu & Xu (2009) [228] Acc RWS 5SX SEM  RH&H<uterion
GGP-GP-MM [3] Acc TouS N/A SEM  RH&H criferion
AF TGP-Bot & Langdon (2000) [41] AcchSize  TouS SSX SEM RH&H criterion,
MF TGP Bot & Langdon (2000) [42] ME. Size  TouS SSX SEM RH&H criterion
NL UF GP -neat-GP [354] ME TouS 5SX SEM  RH&H criterion
AF GP -UDT-EA [377] IGASize  TouS SSX SpeM  RH&H criterion
MF GP -Tackett (1993) [345] ME RWS SSX SRM  S-Exps randomly created
TGP -Mugambi & Hunter (2003) [255] Sen, Spe, Size TouS 5SX SEM  DTs randomly created
SF MF GP -Fuzzy-GP [98] Acc, Size TouS SSX SEM &H criterion
TGP-PFDT [256] Sen, Spe, Size TouS SSX SEM  DTs randomly created
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Table 2.16: Eﬁyﬂm&ntal evaluation reported by GP-based approaches for DTL

Stra- . Datasets Sampling Performance Statistical
tegy DTMH S@: UCI other method measures tests Compared methods
RP NL GP -Marmelstein & Lamont (1998) [241] 2 | HO ME - RBF-NN. MLP. GP
-GIODeT[323] 19 - 5ICV Ace, Size Avg  C45
GS AP GP - Koza (1991 )[200] - - - - - -
fba et al. (1994¥°1171] -2 HO Acc - ANN
- Tiir & Giivenir (1996).[360] - | HO Acc, Time - -
-GPDT [268,33( 111 HO Acc, Size - C4.5
-EDDIE [357] -2 HO Acc - -
-Shirasaka et al. { 1998) [325)] - FD Acc, Size - -
‘Ryan & Rayward-Smith (1998) [314] 6 - HO ME, Size - C4.5
-Cellular GP [117] 5 - HO ME - C45
- Zhao & Shirasaka (1999) [400] - | HO Acc, Size - -
-Oka & Zhao (2000) [272] - 1 HO Ace, Size - C4.5,[325]
-Tanigawa & Zhao (2000) [348) - 1 HO Acc, Size - -
-BGP [101,311] 4 - HO Acc t-test  C4.5,CN2
-Niimi & Tazaki (2000) [267] 1 - HO Acc, Size - GP
Haruyama & Zhae (2002) [152] 3 | HO Acc, Size - [325]
-Eggermont et al. (2003) [99] ] - 10-f CV ME - 45
-Eggermont et al. (2004) [100] 6 - 10-f CV ME - Cc4.5
-EPTree [84] - N2 10-f CV Acc, Size - CART
-EMO [188, 189] & 1 -rcv ME - 45
-GPTree [53.380] -2 HO Acc, Size - C5.0
-Kuo et al. (2006-2008) [210-213] = 1 HO Acc - C5.0
-To & Pham (2009) [352] - 1 FD Sen, Spe - SVM, LR, LDA
-DTiGP [197] s - 4-I CV Acc Avg, WTL J48, jaDTi, GP
-MGP [392] 120 - 10-f €V Aee, Time - C4.5, DTiGF, GP
-MGP [375] mn - 51 CV AUC WTL, Wil-t C4.5, FGP, GGF, EGP
-EDDIELO1 [377] 5 3 HO Mee Wil-t  J48, REPTree, RE
UDT-EA
-GPEI [91,92] 5 - 10 CV Acg - 1D3-S, C4.5
-Saremi & Yaghmaee (2014) [317] 6 - HO Ace, Sige, - C4.5
-MOGP [376] 27 - 5-ICV AUC WTL, Wil-t C4.5, NB, FGF, GGP,
EGP, PRIE, 4 MOGPs
GGP-FGP [220,356] -2 3fCV Acc - Cc45
-CGP [222] 3 - 10-f CV MC - C4.5, PART, kNN, NB
.G’P [355] 6 - 10-fCV,HO ME, Size - C4.5,1D3, NB
Johansson et al. (2010) [176] 25 - 41 CV Acc Fri-t, Nem-t J48
-Johansson & Niklasson (2009) [177], 26 - 4L CV Acc, Fid  Fri-t, BDetJ48
Johansson etal. (2011) [178) Nem-t
TGP: Khoshgoftaar et al. (2003) [187], - | HO ME - GP
Khoshgoftaar et al. (2007) [186]
- Zhao (2007) [399] 13 - FD AUC - C4.5, BR-NN, SVM
OB GP - Lin & Xu (2009) [228] - 5 10-fCV.HO Acc - CART, RE'DF
LOoOCV
GGP-GP-MM [3] 5 - 10-f CV Acc - C4.5, GF, SVM; NB
TGP- Bot & Langdon (2000) [41,42] 4 - 10-f CV Ace, Size - C5.0,0C1 M5
NL GP - Tackett (1993) [345] - 1 HO Acc - BP-NN I
-UDT-EA [377] 5 3 HO Acc Wil-t  J48, REPTree, RF'\
-neat-GP [354] 5 - HO ME, Size  Fri-t, BDt GPF, FlatOE 'O
TGP Mugambi & Hunter (2003) [255] - 1 HO ROC - RBF-NN
SF GP -Fuzzy-GP [98] 5 - 10-f CV ME - C4.5, ESIA, CEFR-Miner
TGP PFDT [256] -2 HO ROC - C4.5
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others’evelve using a weighted sum of the misclassification errors as their local fitness functions. The
best chromosome frh the main population competes with the best chromosome from the others as
shown inFig, 2.19. When it becomes dominant over the others, the local fitness function is adjusted
in each population. A global fitness function is used to determine the dominance of one population
over the ommllnhermore, Aitkenhead [7] implements competition between one axis-parallel DT
and the training set! The algorithm mutates the nodes of the DT while updating the training set size
and the DT depth, itially, the training set contains only two sets of values randomly chosen from the
dataset, and once DT eyelves and its fitness value becomes higher than a threshold value, the training
set size is increased. This process continues until the entire dataset is used to evaluate the DT.

] mn
Istpopulation function | 2nd population |
A singl Ordinary
P population of DTs
I Y
G
&P

i

o
% &
6)?"@, A &

competition', ﬁ3rd population / competition

- population =
ith cogyolved DTs
and n function

Figure 2.19: A competitive CEA méthod using one TGA proposed by Podgorelec and Kokol [292].

On the other hand, the multi-population=geneticalgorithm for DTI (MPGT) described by Podgorelec
and Karakatic [289] and by Podgorelec'et al. [290] is*a cooperative CEA using two sub-populations
of chromosomes to find near-optimal axis-parallel DTs* After a predefined number of generations,
an exchange of DTs between the populationis occurs dccording to one migrate rate. The first sub-
population uses the training accuracy as its fitiess'function afid the second one determines the balanced
single-class accuracies as its fitness value.

Differential evolution: Lopes er al. [238] and Freitas ‘er al. [124]"use*DE to implement a global search

of a near-optimal oblique DT in the Perceptron Decision Tree (PDT) method. The coefficients of
all hyperplanes used in a complete oblique DT aféflencoded in a matrix-based chromosome, and the
independent term of the hyperplanes. as well as the class label of thedleaf nodes, are stored in two
vectors. In each DE iteration, mutation parameters are randomly altered.as well as a group of new
DTs randomly created replaces the worst chromosomes in the populalioﬁ. Furthermore, one special
treatment for the leaf nodes is defined.

Grammatical evolution: Motsinger-Reit et al. [254] define an appropriate grammar M@p axis-parallel

DTs from binary strings used to model one gene-gene interaction [ 175].

Gene expression programming: Ferreira [111] and Wang er al. [378] use GEP to conduct asglobal search

of near-optimal axis-parallel DTs. In these methods, the attributes of the dataset functions, the
class labels are terminals, and the D¢ domain is used to represent the thresholds valu&)led with
numerical attributes. Furthermore, the GEP decision tree (GEPDT) method described byl 1 al.
[300] considers the range of the values ofgh numerical attribute to compute the threshold val u@
in the test conditions. On the other hand, Weihong er al. [382] implement a GEP for DTI includi
fuzzification process of the numerical attributes. Several symmetrical triangular membership fun s
are associated with each test condition of an axis-parallel DT previously induced with the GEPDT
method.
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Discussion

Table 2.17 shlﬁ;_(he components of these approaches. Ten studies implement an uni-objective FF, and
the remaining apply“an aggregating FE. No study utilizes a multi-objective FF in its evolutionary process.
Test accuracy is the fitness measure most commonly utilized by these methods. Furthermore, CEA-based
approaches manipulatefree structures, and the others represent their chromosomes as sequences of values.
Seven studies rize one linear-ranking-based selection, and four studies perform a roulette-wheel-based
selection. Both the sub-freg=swapping-based crossover and the node-disturbance-based mutation are used in
eight studies, although severdl studies implement specialized operators to evolve their candidate solutions.
Finally, a random generation. of/candidate solutions to create the initial pulation is carried out with the
majority of these approaches. mi«:ulm’, Zhang et al. [396] to create a set of hyperplanes through an
ANN-based approach. In the work of Aitkenhead (2008) [7], a randomly generated decision stump is used
as the initial candidate solution in his"CEA-based method.

Table 2.17: Components of other EA-based’approaches for DTL

Stra- L Reépr. Fitness Variation operators - .
tegy DTFF MH Studies schéme measure SEL Xover MUT Initial solution
GS APUF CEA Aitkenhead (2008) [7] Tree Acc N/A N/A NDM A DS randomly created
GEP - Ferreira (2006) [111], Linear g Atc RWS SPX, DPX, UnM, SpeM ChCs randomly created
Wang et al. (2006) [378], SpeX
GEPDT [300]
AF CEA - Podgorelec et al. Tree,  AcchSize LRS S§X NDM DTs randomly created

(1999-2002) [292-294],
Babié et al. (2000) [11],
Spragar (2001) [335]

-MPGT [289,290] Tree ActrSize LRS SSX NDM  DTs randomly created
GE -GEDT [254] Linear Sem, Spe TouS SPX BIM DTs randomly created
OBUF ES -OCI-ES [58,59] Linear Twoing [N/A N/A SpeM  The best APH found by
the OC1-AP method
‘MESODT [396] Linear IG,DLS" SpeS SpeX SpeM  Hyperplanes created
using an ANN
DE -PDT [124,238] Linear ME Spes SpeX SpeM  RealCs randomly created
SF UF GEP - Weihong et al. (2010) [382] Linear  Acc RWS SPX, DPX, UnM, SpeM ChCs randomly created
SpeX

In Table 2.18 is shown the 19 experimental studies reported by the existing literature implementing other
EA-based approaches for DTI. This table shows that 12 methods induce DTs with several UCI datasets
and eight studies with datasets from other sources. k-fold CV and hold-out have been applied as sampling
methods in eight and nine studies, respectively. Also, the full datasets have been used.in the works of
Aitkenhead [7] and Wang er al. [378]. Size and test accuracy have been assessed by fivesand”17 studies,
respectively. Also, Sen and Spe have been applied in four studies, and ME is evaluated| by, the GEDT
method [254]. Six studies implement a statistical test of their experimental results, and one post-Hocianalysis
is carried out in the MPGT method [289]. Eleven studies compare their experimental results “withythose
obtained by the C4.5 method and by the C5.0 algorithm. In particular, the results of the MPGT me €
compared with those from a single population GA-based method implemented by the authors. ; O
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Table 2.18: gpgrimcntal analysis reported using other EA-based approaches for DTI.

Stra- ' . Datasets Sampling Performance Statistical
tegy oL S@ UCI other method  measures tests Compared methods
GS APCEA-Podgorelec et al. - 1 HO  Acc, Sen, Spe - (C5.0. DF
(1999-2002%[292-294], Sprogar
(2001) [335]
-Babid et akA20000 [11] - 1 HO  Acc, Sen, Spe - C5.0, MiDeciT
-Aitkenhead (200807] 2 - FD Acc - C4.5, GALE, BP-NN
"MPGT [289,290] o - 5-ICV  Acc, FM, Size Fri-t, Nem-t C4.5, CART, GT
GEP -Ferreira (2006) [11T1] 2 - HO Acc - -
-Wang et al. (2006) [378] 2 - FD Acc - -
‘GEPDT [300] 8 - 5-ICV Acc - C4.5
GE -GEDT [254] - 40 10LCv ME - C4.5
OB ES -OCI-ES [58.59] 10 3  54CV Acc, Size, I-test CART, OC1, OCI-GA,
Time 0OCI1-5A
"MESODT [396] 2 2 HO Acc, Size - C5.0, 0C1, OC1-ES,
APDT
DE -PDT [124,238] 8 - HO Acc KW-t J48, BFTree, RTree,
RBF-NN, MLF. NB. IB1
SF GEP -Weihong et al. (2010) [382] 2 - 5-ICV Acc - GEPDT

2.5.3 Swarm-intelligence-based methods

SI methods such as ACO and PSO have been applied for¢DTL. All SI-based approaches described in the
existing literature induce only axis-parallel DTs. A timeline af these methods is shown in Fig. 2.20.

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
Axis Parallel DTs . -
Auf Colany O

q ACDT: ATM:

Bur. Boryczka &  Otero &
Lhot 2 Kozak, 2010 Freitas, 2012
r Particle Swarm O zation - ; + : i

Chan

TS0:  ctal. 2011
Veenhuis d
2005 APSO: Cho

~etal. 2011

Figure 2.20: Timeline of swarm-intelligence-based methods for DTL

2

gnt colony optimization: Bursa and Lhotska [54,55] describe the ACO-DTree methojﬁl global search
strategy in which each artificial ant constructs an axis-parallel DT utilizing a pheromone matrix. This
matrix represents a fully connected graph where the nodes are associated with thwgbutes of the
dataset, the edges indicate the transition between two nodes, and the pheromone val€s indicate the
probability of visiting a successor node. First, a root node with one attribute randm‘Tﬁy\Ejmsen is
created, and for each possible successor node, the next attribute is probabilistically selected us o the
pheromone matrix. This process is repeated until a predefined DT depth is reached. In
DTree, only the ants representing better solutions can deposit pheromone in the matrix. The induce
DTs are pruned by applying a penalty value for unused nodes. A similar approach known as the Af ﬁ
(Ant Colony algorithm for constructing DTs) method is described by Boryczka and Kozak [36-39].
The ACDT method uses a combination of the splitting criterion and the pheromone values to select
the attributes which will be used to build a DT. The induced DT is refined by applying the error-based
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pruning procedure. Also, an adaptive discretization of the numerical attributes is implemented by
ryczkadand Kozak [37].

Furtherrr?nrﬁbe Ant-Tree-Miner (ATM) method is described by Otero et al. [278] implements an
iterative proceSs in which each artificial ant creates a new DT based on a combination of the split-
ting criterion” and-the pheromone values. Each element in the pheromone matrix has three values
(edge, level x),\where' edge represents a univariate test condition, /evel is the DT level of the edge,
and x 1s a successor atteibute. The induced DTs are pruned by applying the error-based pruning proce-
dure.

Particle swarm optimization:” Veenhuis ef al. [368] introduce a PSO-based approach to induce axis-parallel
DTs. In this method, known.as Tree Swarm Optimization (TSO) method, one DT is a particle moving
in the solution space. The DT iaepresented as a sequence of nodes (test conditions and leaf nodes)
traversed in breadth-first order. Bach node has a symbols vector grouping all possible test conditions
and the class labels. The symbolthat will be used in the node is the one with the maximum value
in the real-valued vector represen@h_e particle in the swarm. If a numerical attribute is selected,
the first element in this vector is takenas its associated threshold value. Furthermore, Fieldsend [114]
implement a multi-objective PSO (MOPBSO) for DTI based on the TSO and the Pareto dominance de-
scribed by Alvarez-Benitez et al. [8]. In this method, instead of using one real-valued vector, a matrix
in which each row represents a discréte symbol (an attribute or a class label) and each column is a node
of the DT is applied. An additional’eeliimn in+he matrix is used to represent the threshold values.

On the other hand, Chan ef al. [64] imiplement‘a method to find the test conditions with numerical
attributes used in a DT induced employing a recursive partitioning strategy. Each particle represents
one univariate test condition with a numerical attributé. Additionally, Cho et al. [67] implement a sub-
sequent optimization strategy to improve the’threshold yalues of the test conditions of a DT previously
induced by the CART method. Each particle in_the swarm encodes the threshold values of all test
conditions used in the induced DT.

Discussion

In Table 2.19 are shown the components of the SI-based methods for DTL Six.studi@levaluate an aggregating
FF and four studies one uni-objective FF. Only the MOPSO method [114] applies a multi-objective FE Test
accuracy and ME have been used as fitness measures in six and four studiest€spectively. Furthermore,
both a matrix representation and a sequence of values have been applied to eMg_gzmdidate solutions in
eight and three studies, respectively. In particular, the ACO-based approaches uselthe pheromomatrix to
represent a DT. Also, the MOPSQO method utilizes a matrix to encode a complete oblique,DT. Finally, the
random generation of candidate solutions to create the initial population is the strategy applicd in all studies
implementing these MHs.

Table 2.20 resumes 11 experimental studies in the existing literature implementing SI-based‘nethods for
DTL In this table is shown that all studies build DTs with UCI datasets, and four methods employ another
type of datasets. Six studies implement a hold- out.mplmg procedure, and one k-fold CV is apphéd in the
ATM method [278] and the APSO algorithm [67], as well as in the procedure described by Chan ¢ el alh[64].
Both the TSO method [368] and the MOPSO algorithm [114] use the full dataset to obtain their perh:‘p e
values. Test accuracy, size, and ME have been adopted as performance measures in eight, six and-three
studies, respectively. The ATM method is the only one reporting statistical tests using the Wilcoxon and+the
Friedman tests, as well as the Hommel post-hoc analysis to compare its results. Several studies compare
their experimental results with those obtained by the C4.5 method and the CART algorithm. In particular,
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Table 2.19: Compenents of SI-based approaches for DTL

St 1y r BF M _Studies Repr. — Fitness Initial solution
tegy scheme measure
GS AP UF ACQO_ -ACO-DTree [54,55] Matrix ME A pheromone matrix randomly created
PSO ~TSOy368] Linear ME Particles randomly created
APSO167] Linear Acc Particles randomly created
AF ACO -ACDT36-39] Matrix AcenSize A pheromone matrix randomly created
-ATM [278] Matrix GRAPheromone A pheromone matrix randomly created
PSO -Chan, efal(2011) [64] Linear GRAAcc Particles randomly created
MF P50 -MOPSO [114] Matrix ME Particles randomly created

the results of the ACO-DTree method{54] are compared with those produced by an EA implemented by the
authors.

Table 2.20: Experimental analysis reported Gsing SI-based approaches for DTL

Stra- . Datasets”Sampling Performance Statistical
tegy DTMH Studies UCI other metl:md measures tests Compared methods
GS AP ACO-ACO-DTree [54,55] 1 2 HO ME - RA
-ACDT [36-39] 7 4 HO Acc, Size, Time - CART, Ant-Miner
-ATM [278] 227 £ l0-f CV Acc, Size Fri-t, Hom-t, C4.5, CART, aCDT
Wil-t
PSO -TSO [368] 1 - FD Acc - C4.5, GP
"MOPSO [114] 5 - FD ME - C4.5, GP, TSO
APSO [67] 1 1 S5 CV At - CART
«Chan, etal. (2011)[64] 4 1 10 CW Ace, Size - C5.0, CART, QUEST, CHAID

2.5.4 Hyperheuristic-based approaches to build DTI methods

All HH-based approaches utilized to create DTI methods described in the’existing literature use one EA. The
timeline of the HH-based methods for DTI is shown in figure 2.21.

1991 1993 1995 1997 1999 2000 2003 2005 2007 2009 ) 2011 2013 2015
Axis Parallel DTs

Linear Genetic Algorithm:

HHDT: “#HEAD-DT: MOHEAD-DT:
Vella et al Bafes ——— Basgalupp
2009 Balh2on etal 2015
Jovanivié
etal. 2014

Grammatical -,
i Evelution:
| ESC-GE:
i lupp,
: 2014

Figure 2.21: Timeline of HH-based approaches to build DTI methods.

Genetic algorithms with linear chromosomes: Vella ef al. [369] describe a GA-based HH to build DTI
algorithms. An individual in this method represents a list of rules to select the most appropriate
splitting criterion based on the entropy degree of the attributes in a dataset. Each rule “if{x > high and
v < low) then apply criterion h” is codified as a 5-tuple (xhigh,y,low,h), where x and y are entropy
values, high and low are threshold values, and h identifies one of 5 splitting criteria.
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2
garros etal. [13,15,16] describe the Hyper-heuristic Evolutionary Algorithm for Designing DT algo-
rithms" (HEAD-DT) in which four components of a DTI method are encoded in a linear chromosome:
the splitieriterion, the stopping rule, the procedure to deal with missing values, and the pruning ap-
proach. Maregver, Basgalupp ef al. [20] introduces a multi-objective version of the HEAD-DT proce-
dure known as'the MOHEAD-DT method allowing to choose between the Pareto dominance approach
and the lexicographianalysis, The MOHEAD-DT method proposes several modifications in the fit-
ness calculation, thé selection operator, and the procedure to select the best method in the population.
Furthermore, Jovanévicef al. [181] implements a similar approach in which five components of a DTI
process are encoded:” the procedure to remove of insignificant attributes, the split criterion, the split
evaluation method, the stop-eriterion, and the pruning approach. These components are obtained from

. several DTI methods such.asdD3, C4.5, CART, and CHAID.

2

Grammatical evolution: Basgaluppetal [18] implement a GE-based method known as Evolutionary Split
Criteria with Grammatical Evolutien (ESC-GE). This method applies a grammar that automatically
generates the best split criterion fora DTI method. Each chromosome in the population represents a
split criterion that is incorporated into a/BDTI algorithm.

Discussion

In Table 2.21 are shown the components‘of the HH-based, approaches to building DTI methods. The HHDT
method [369], the HEAD-DT algorithm [13]; and the work of Jovanovic et al. [181] evaluate an uni-objective
FF, the ESC-GE procedure [18] implements/@iiaggregating FF, and the MOHEAD-DT method [20] applies
a multi-objective FE. Test accuracy is the fitness meastge’mest commonly evaluated by these HH-based
approaches. On the other hand, both the sequence of walue§ as.representation scheme and the random gen-
eration of candidate solutions for the initial population are the.€omponents included in these approaches.
Finally, tournament-based selection, single-point crossover, and-iniform mutation are the genetic operators
most commonly used by these methods.

Table 2.21: Components of HH-based approaches to build DTI methods.

Stra- e Repr.  Fitness Genetic operators - .
tegy DT FF MH Studies scheme measure  SEL Xovér . MUT Initial solution
GS AP UF LGA -HHDT [369] Linear  Acc TouS SPX UnM  NumC randomly created
-HEAD-DT [13,15,16] Linear Acc TouS SPX UnM YNumC randomly created
Jovanovié et al. (2014) [181]  Linear  Acc RWS UnX  SpeXs ChC randomly created
AF GE -ESC-GE [18] Linear PASen  TouS SPX UnM 7§ BinC randomly created
MF LGA -MOHEAD-DT [20] Linear FM, Size TouS SPX UnM  IntC randgmly created

2

Finally, Table 2.22 !sumes the experimental studies reported by the existing literature.in which an HH
is implemented to build DTI methods. In this Table is shown that four methods use UCI dataséts, and the
EC—GE method [18] utilizes another type of datasets. All HH-based approaches to build DT ‘methods
implement the k-fold CV, and also they calculate the test accuracy of the DTI method as a performanee mea-
sure. F-measure and size are also evaluated in two and three studies, respectively. Three studies implement a
statistical test to compare their results with those reported by other approaches. The results obtained by the
C4.5 method have been used to analyze those obtained by the DTI methods constructed through these proce-
dures. In particular, the experimental results of the HHDT method [369] are compared with those obtained
by several variants of the ID3 method.
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Table 2.22: EXperimental evaluation reported by hyperheuristics.

Stra- . Datasets Sampling Performance Statistical
tegy DT MH Sfudies UCT other method measures tests Compared methods
GS AP LGA-HHDT [369] 12 - 9fICcVv Ace - 1ID3
-HEAD-DTY13, 15, 16] 20 - 10-fCV  Acc, FM, Size Fri-t, Nem-t C4.5, CART
Jovanovid eral. (2014) [181] 16 - 10-[CV Ace - C4.5, REPTree, ADTree, LMT
-MOHEAB-DT{20] 200 - 10-fCV FM, Size  Fri-t, Nem-t C4.5, CART. HEAD-DT
GE -ESC-GE [18] - 20 5-fCV  Acc, FM, Size Fri-t, Nem-t J48

5.5 Comparative analysis

In the following paragraphs, a comparative analysis of the different MH-based approaches for DTI is pre-
sented. First, a general summary Of the’Classification of the methods described in this chapter is presented,
followed by a comparative analysis of-béth. the components of the algorithms and the elements considered
in their experimental studies. An annual summary of the MH-based approaches for DTI is displayed in Fig.

2.22.

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 206972005 2006 2007 I60S 2B09 2010 2011 2012 2013 2004 2015 2016 2017

ESS BEA @S] OHH
Figure 2.22: Annual summary of MH-based approaches/for DTIL.

Classification of MH-based approaches for DTI

SS-based methods for DTI: In Table 2.23 the classification of the SS-based approaches for DTI is detailed.

Fig. 2.23 illustrates the proportion of these studies according to the type of strategy‘implemented, by
the type of induced DT, and by the type of MH. Fig. 2.23(a) shows that recursiye partitioning is the
strategy most commonly used with these methods (53.85%). The SS-based MHs gmproves a single
candidate solution in each step of its iterative process, and it is well situated to replacea standard split-
ting criterion by an intelligent search procedure to obtain a better separation of the traming instances.
This procedure provides better exploitation of the search space identifying areas with pr@missory so-
lutions, and also it allows to escape from a local optimum. On the other hand, the subsequént opti-
mization strategy (38.46%) is mainly applied to improve the performance of a DT previously induged
by altering its test conditions or by including membership functions values of a soft DT. Fig. 2.23(h)
shows that these methods have been applied to build both axis-parallel DTs and oblique DTs inuthie
same proportion (46.15%). Finally, in Fig. 2.23(c) is shown that only four types of SS-based MHs
have been used for DTI, highlighting the implementation of those based on SA (61.54%).
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Table 2.23:_@lassification of SS-based MHs for DTL

” " GS:T.69% SET60% | GRASP.7.69%
oira- um - SLS:T.60%
tegy DT MHsl m“es.smdles
RP AP SA 1\ Mimed & Rahman (2004) [6] SoRe omss15% R
GRASP | HRicheeo et al. (2012)[279]
OB SLS 1 OC1 [260, 261]
SA 2 SADT154]: OC1-SA [59]
TS 2 LDTS [224]; LBSDTyy [277] —— bios SAeLE
AP46.15%
GS AP SA 1 GCP/SA [118]
SO AP SA 3 Bucy & Diesposgi(1991) [51.52]:
SACS [2407
OB TS I EPTS |26] (a) Strategy type (b) DT type (c) MH type

Figure 2.23: Percentages of studies implementing SS-

SE SA based MHs for DTL.

Dvordk & Savicky (2000) [96]

EA-based methods for DTI: In Table 2.24 the.classification of these methods is shown. Both GA and GP

are the population-based approaches meostcommonly applied to implement DTI methods. They en-
code their candidate solutions through different structures: GA regularly utilizes linear chromosomes,
and the standard GP evolves tree structures. Following the definitions and interpretations provided in
the existing literature, two types of GA-based approaches for DTI are described in this review: LGA
and TGA. LGA represents the standardGAencoding’chromosomes with fixed-length linear sequences
of values, and TGA uses tree-like strueturgs for representing candidate solutions. There exists a dis-
agreement about whether to consider a TGA awa GAlor.a GP. Since a TGA modifies a population of
trees in its evolutionary process, it could be regarded as a/GP. Nevertheless, since Koza [201] points
out that the chromosomes in a GP are generated by combining the elements from both function and ter-
mina&ts, then a TGA should not be considered a/GP becausethey do not define any set to represent
their candidate solutions. In contrast, some authors point DLM‘L implement a GP-based approach,
but they build their trees without using the previously referred sefs. In this thesis, the analyzed studies
are classified according to the definition provided in them.

SORR SFB.96% s
RP-13.43% —— EAS 5T
- NL9.7% Ln
[TGA:16.42%
OB:16.42%

[LGA:26.87%
GS83.58%
AP:64.93%
GP43 28%
(a) Strategy type (b) DT type (c) MH type N
Figure 2.24: Percentages of studies implementing EA-based approaches for DTL .O

Fig. 2.24(a) shows that the global search (83.58%) is the strategy most commonly implemented to
build DTs with EA-based approaches. EAs evolve populations of chromosomes and use intelligent
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Table 2.24: Classification of EA-based approaches for DTL

Stra- Num ..
tegy DT MH slmliesmm]lﬁ
RP OB ES 3 QCI-ES [58,59]: MESODT [396]
LGA T BTGA [62, 63]; OCL1-GA [58, 59]: Kretowski (2004) [203]; Pangilinan & Janssens (2011) [282]; HBDT
[343]
NL LGA 2 GA-QDT [265,266]
GP 2 Marmelstenty & Lamont (1998) [241]; GIODeT [323]
SF LGA 4 Janikow (1996 173]: GA-FID3 [65]; GC-SDT [326]: FVBDT [390]
GS AP LGA 10 ICET [361]: Calirop [185]: Bandar et al. (1999) [12]: MEPDTI [9]: Bratu et al. (2007) [44]: Smith (2008)
[331]; Cha & Tappert (2008) [60,61]; ECCO [274]; EVO-Tree [174]
TGA 18 Podgorelec & Kokol (1998) [291]; OOGASC4.5 [129]: GATree [182,283,284]: GAIT [130-134]; Sérensen
& Janssens (2003) [333], GEA-DT [206]: Biedrzycki & Arabas (2006) [29]; GDT-MC [208]; GDT-MA
[204); LEGAL-Tree [19,21]): Bosnjak et al. (2015) [40]
GP 46 Koza (1991)[200]; Iba éral. (1994) [171]): Tiir & Giivenir (1996) [360]; GPDT [268,330]: Ryan & Rayward-
Smith (1998) [314]; EDDIE\[357]: Shirasaka et al. (1998) [325]: Cellular GP [117]; Zhao & Shirasaka
(1999) [400]; Oka & Zhao (20000{272); Tanigawa & Zhao (2000) [348); Niimi & Tazaki (2000) [267]; FGP
[220,356]: BGP [101,311]; Haruyewma & Zhao (2002) [152]; Khoshgoftaar et al. (2003, 2007) [186, 187];
Eggermont et al. (2003, 2004y [99:100]: EMO [188. 189]: EPTree [84]: GPTree [53,380]: CGP [222]:
Gp [355]: Kuo et al. (2006-2008)2L0-213]; Zhao (2007) [399]: To & Pham (2009) [352]; Johansson &
Niklasson (2009) [177], Johansson et al. (2010, 2011) [176,178]: DTIiGP [197]; MGP [392]: MGP [375]:
EDDIE-101 [377]: GPEI [21:92]: MOGPR376]; Saremi & Yaghinaee (2014) [317]
CEA 8 Podgorelec et al. (1999-2002) [292-294]y/Babié et al. (2000) [11], Sprogar (2001) [335]: Aitkenhead
(2008) [7]: MPGT [289,290]
GE 1 GEDT [254]
GEP 3 Ferreira (2006) [111]: Wang er al=(2006) [378]; GEPDT [300]
OB LGA 2 GDTI[93]: EFTI [373]
TGA 4 Siegel (1994) [327]; GEA-ODT [205,207]:'TARGET [145]
GP 4 Bot & Langdon (2000) [41,42]; Liu & Xua2009) [228]: GP-MM [3]
DE 2 PDT [124,238]
NL LGA 5 GALE [229-233]
GP 4 Tackett (1993) [345]: Mugambi & Hunter (2003) [255]; UDT-EA¢[377]: Neat-GP [354]
SF LGA 2 Kym & Ryu (2005) [191,192]
GP 2 Fuzzy-GP [98]: PFDT [256]
GEP 1 Weihong etal. (2010) [382]
SO AP LGA 1 Chen et al. (2009) [66]
SF LGA 3 Crockett et al. (1999) [76]: G-DT [286]: IIVFDT [316]

search procedures by applying a controlled interaction of their exploration and exploitation skills.
These characteristics allow them to avoid the problems of traditional DTI methods:” On the other
hand, the recursive partitioning strategy is implemented in several EA-based approaches (13.43%).
In this case, an EA is run as many times as internal nodes are required to build a DT. Ig*Table 2.24
is shown that this strategy is commonly applied for inducing multivariate DTs by determinit)g the
best combination of attributes used by the test condition of one tree internal node. Finally, EA-based
methods implementing a subsequent optimization strategy have been used to modify a previously
induced DT through two alternatives: 1) for adding the membership functions in each internal node of
a soft DT, and 2) for pruning a DT.

Fig. 2.24(b) shows that EA-based approaches are commonly utilized to induce both axis-parallel DTs
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(64.93%).and oblique DTs (16.42%), and to build non-linear DTs and soft-DTs to a lesser extent. In
Table 2.24'is shown that non-linear DTs are constructed by LGA-based and GP-based methods. On
the otherhand, soft DTs are induced by GA-based approaches since the parameters describing the
membership functions associated with the possible outcomes of the test conditions in a soft DT can be
encoded usinglinear chromosomes. Furthermore, clustering-based methods also have been utilized to
induce soft DT, either to determine the number of branches of each tree internal node or to fuzzify
the values of the attfibutes in a dataset.

In Fig. 2.24(c) is shawn that GP is the most common type of MH utilized to implement DTI methods
(43.28%). Nevertheles§, i LGA and TGA are grouped, they represent the 43.29% of these approaches.
In contrast with the use of‘these MHs, other EAs such as ES, CEA, GE, DE, and GEP have been less
applied for constructing DTS, They represent the 13.43% of all these methods, in comparison with the
86.57% of studies describing the application of GA or GP for DTL

SI-based methods for DTI: SI-basedethods have been sparsely applied for DTI with only 11 studies in
the existing literature implementing ‘this type of MHs. Table 2.25 shows the classification of these
methods. In Fig. 2.25(a) is shown that global search is the most common strategy implemented for
DTI with these methods (81.82%). In Table 2.25 is shown that the axis-parallel DT is the only one
type of induced DT through SI-based methods. Fig. 2.25(b) shows that two types of SI methods
have been applied to build DTs: A€O and'PSO. ACO is the most used method to build DTs since it
denotes a problem with a graph inéwhich a setof artificial ants walk with the aim of finding a near-
optimal solution. This scheme allows expressing a DT employing a pheromone matrix. The lack of
development of SI-based approaches forDTI may(be since this type of MHs is more recent than EAs.
A challenge for the implementation of S8¥based methods for DTI such as PSO is the definition of a
scheme for mapping the DT structure from afeal-valued vector representation.

Table 2.25: Classification of S1-based MHs for DTL

Stra- Num

MH . Studies

tegy studies [Tsquitmg |
RP AP PSO | Chanetal (2011) [64] s
GS AP ACO 7 ACO-DTree [54,55]: ACDT [36-39]; |

ATM [278] .

AP PSO 2 TSO [368]; MOPSO [114]
50 AP PSO 1 APSO[67] GSA182%
ACOH3 (4%

Table 2.26: Classification of HH-based approaches to
build DTI methods.

DT MH U™ Seudies ' N
studies

(a) Strategy type (b) MHtype
AP LGA 6 HHDT [369]; HEAD-DT [13, 1S, 16]; Jo- _. o )
vanovié et al. (2014) [181]: MOHEAD-DT Figure 2.25: Percentages of studies implémenting SI-

120] based approaches for DTL
GE 1 ESC-GE[18]

HH-based procedures to build DTI methods: In Table 2.26 is shown the classification of these methods.
In this table can be observed that LGA is the MH most commonly used to implement DTI algorithms.
HHs have been applied in two schemes: 1) to build DTI methods combining several components, and
2) to select the best splitting criterion used by one DTI method. HHs are a novel area in soft computing
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for méchine learning, and the axis-parallel DTs are the only one type of DTs that are generated for the
classifiers/onstructed with some HH-based approach.

Table 2.27 shows the classification of MHs-based approaches for DTI, in accordance with the type of
strategy implemented, and Table 2.28 shows the classification of these approaches considering the type of
induced DT. In Table2'29 and Table 2.30 are shown the summaries of each type of classification. Fig. 2.26

shows the percentages of-Studies in the existing literature desc

ing MHs-based approaches for DTI based

on the strategy type, the DT type, and the MH type. Fig. 2.26(a) shows that global search is the prominent
strategy implemented for mi (78.18%) and in Fig. 2.26(b) is shown that axis-parallel DTs are the most
common type of induced DT with.these approaches (63.03%). In Fig. 2.26(c) is observed that GA (38.78%)
and GP (35.15%) are the most commonly types of MHs implemented for DTL

Table 2.27: Classification of MH-based approaches Table 2.28: Classification of MH-based approaches for type of
by type of strategy applied.

induced DT.

MHType MH RP GS SO Total MH Type MH AP OB NL SF HH Total
Ss GRASP 1 1 Ss GRASP 1 1
SLS 1 1 SLS 1 1

SA 3 1 4 8 SA 5 2 1 8

TS 2 1 3 TS 3 3

EA ES 3 3 EA ES 3 3
LGA 13 25 4 42 LGA 11 9 7 10 6 42

TGA 22 27 TGA 18 4 22

GP 2 56 58 GP 46 4 [ 2 58

CEA 8 8 CEA 8 8

DE 2 2 DE 2 2

GE 2 2 GE 1 1 2

GEP 4 4 GEP 3 1 4

51 ACO 7 7 b | ACO 7 7
PSO 1 2 1 4 PSO 4 4

Total 26 129 10 165 Total 104 28 13 13 7 165

Table 2.29: Summary of MH-based approaches by type

of strategy applied.

MHType RP GS SO Total
SS 7 i 5 13
EA 18 119 4 141
SI 1 9 1 1
Total 26 129 10 165

Table 2.30: Summary of MH-based approaches for type

of induced DT.

MHType AP OB NL SF HH Total
55 6 6 1 13
EA 87 22 13 12 7 141
S1 11 11
Total 104 28 13 13 7 165

S06.06%

RP:15.76%

GE:TR 8%

(a) Strategy type

H: §.754%
SF: 7.5%%

NL: 7.88%)

OF: 16.07%

AP 63.03%

(b) DT type

(¢c) MH lyp;\;

Figure 2.26: Percentages of studies implementing
based approaches for DTL
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Analysis of'the.components of MH-based methods for DT1

Fitness function and representation scheme: In Table 2.31 is shown the classification of MH-based ap-
proaches fofitype of fitness function, and Table 2.32 shows the classification of these approaches for
type of representation scheme. Summaries of each type of classification are shown in Table 2.33
and in Table 2. 347 respectively. Fig. 2.27 shows the percentages of studies in the existing literature
describing MHs=based approaches for DTIL. These rates are based on two constituent elements: the
fitness function types“and. the kind of representation scheme. Fig. 2.27(a) shows that uni-objective
FF is the prominent type of fitness function in these MH-based approaches (55.15%), the aggregating
FF is implemented in 56 studies (33.94%) and only 18 methods (10.91%) evaluate a multi-objective
FF. Furthermore, in Fig. 2.27(h) is shown that the candidate solutions are represented with tree-like
structures in 95 MH-based approaches (57.58%), with a sequence of values in 61 studies (36.97%),
and with a matrix in nine studies (5.45%).

Table 2.31: Classification of MH-based #pproaches for Table 2.32: Classification of MH-based approaches for

type of fitness function. type of representation scheme.

MH Type MH UF AF MF Total MH Type MH Linear Tree Matrix Total
SS GRASP 1 1 S8 GRASP 1 1
SLS 1 1 SLS 1 1

SA 5 3 8 SA 2 6 8

TS 2 1 3 TS 2 1 3

EA ES 3 3 EA ES 3 3
LGA 33 8 1 42 LGA 42 42

TGA 10 10 2 22 TGA 22 22

GP 25 19 14 58 GpP 58 58

CEA 1 7 8 CEA 8 8

DE 2 2 DE 2 2

GE 2 2 GE 2 2

GEP 4 4 GEP 4 4

SI ACO 2 5 7 SI ACO 7 7
PSO 2 1 1 4 BESO 3 1 4

Total 91 56 18 165 Total 61 95 9 165

Table 2.33: Summary of MH-based approaches for type Table 2.34: Summary of MH-based approaches for type

of fitness function. of representation scheme.
MH Type UF AF MF Total MH Type Linear TreeMatrix Total
SS 9 4 13 SS 5 7 1 13
EA 7% 46 17 141 EA 53 88 141
SI 4 6 1 11 SI 3 ] L1
Total 91 56 18 165 Total 61 95 9 165

Fitness measure: Table 2.35 shows the classification of MH-based approaches for kind of fitness mc!tsure,
and Table 2.36 shows the summary of this classification. Fig. 2.28 shows the percentages ofthe’t-ypes
of fitness measures used for MH-based approaches for DTI. Fig. 2.28(a) shows that twoing rule 18
adopted in seven studies (24.24%) and information gain is applied in six studies (20.69%). Other types
of splitting criteria such as Gini index and the MDL principle have been utilized in several studies. On
the other hand, in Fig. 2.28(b) is shown that test accuracy and size are the performance measures most
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commionly”evaluated to determine the quality of the candidate solutions, with 41.71% and 31.75%,
respectively. Other performance measures such as misclassification error and misclassification costs
also have'bcen used to determine the quality of a candidate solution.

Fable.2.35: Classification of MH-based approaches by type of fitness measure.

MH Splitting criteria Performance measures Total
type - IG Twoing  Gini Other Ace ME  Size Other

SS  GRASP 1 1

SLS 1 1 1 4 7

SA 1 2 5 3 11

TS 1 2 3

EA ES 1 2 1 4

LGA 2 3 4 2 19 5 11 5 51

TGA 18 3 13 2 36

GP 33 13 29 11 86

CEA 8 7 15

DE 2 2

GE 4 4

GEP 4 4

SI ACO 1 4 2 4 11

PSO l 2 2 5

Total 6 7 5 I 88 34 67 22 240

Table 2.36: Summary of MH-based approaches by type of fitness measure.

MH Splitting criteria’ Performance measures Total
type IG Twoing Gini Other Ace o ME  Size Other
S8 3 2 1 & 7 3 22
EA 3 5 4 3 72 23 60 22 202
SI 2 6 4 4 16
Total 6 7 5 11 88 34 67 22 240
WF |nq|"». [Matrix: 5.45%)]
Other: 37.93%
AF: 33.94%
Swze: 31.75%
Gini: 17.24% |
I
1G: 20.64%
UF: 55.15% Tree: 57.58%
Accid.71%
Twoing:24.14% \
(a) FF type (b) Rep. scheme (a) Splitting crite- (b)  Performance
type ria measure

Figure 2.27: Percentages of components used in MH- Figure 2.28: Percentages of components used in MH-

based approaches for DTL

based approaches for DTL
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Genetic operators: The types of selection, crossover and mutation operators that have been used for EA-
based ‘approaches for DTI are shown in Table 2.39, Table 2.37 and Table 2.38, respectively. Since
these operators have been applied alone or in combination, the total reported in each table is dif-
ferent. In Table 2.39 is shown that the tournament-based selection is utilized in 55 studies and the
roulette-wheel“based selection is applied in 34 studies. In the case of EA-based methods using linear
chromosomes, single-point crossover with 15 studies and uniform mutation with 11 studies are ge-
netic operators most commonly implemented in these approaches. Sub-tree swapping with 82 studies
and sub-tree replacément with 43 studies are the crossover and mutation operators most utilized by
EA-based methods, respectively.

Table 2.37: Classification of EA-basedapproaches for

type of crossover operator.

Table 2.38: Classification of EA-based approaches for type of
mutation operator.

Linear chromosome Tree-based chromosome

Linear chromosome Tree-based chromosome

MH “GpX DPX Other SSX SpeX Othér - °# MH (Nl nUM BIM SRMNDM Spem  Other Total
LGA 10 8 4 3 25LGA 11 3 6 6 26
TGA 21 12 33 TGA 1 % 37
GP s 11 56 GP 4 13 s 3064
CEA 7 7) CEA 8 g
GEP 4 4 4 12_CEP 4 4 8
GE 1 I\, GE 1 1
ES 1 I ES 2 2
DE 20 2 DE 2 2
Total 15 12 4 8 11 13 137 Total 11, 7 7 43 32 19 29 148

Finally, in Fig. 2.29 is shown the proportion‘of genetieoperators implemented in the EA-based ap-
proaches for DTL The tournament-based seléction (48:67%) and the sub-tree swapping crossover
(59.42%), as well as the sub-tree replacement (29405%) and/the node disturbance (21.62%), are the
genetic operators most used for this type of metheds.

Table 2.39: Classification of EA-based approaches for
type of selection operator.

MH RWS TouS Other  Total
LGA 11 7 6 24
TGA 7 5 6 18
GP 12 42 2 56
CEA 7 7
GEP 4 4
GE 1 1
ES 1 1
DE 2 2
Total 34 55 24 113

Analysis of the experimental studies

Other: 12.32% i
Onher: 21.24%| Othcr: 19.59%

BIM: 4 T3%
DPX: 9.42% nbik: 4.73%

Unhd: 7.43%
RWS: 30.00%| M I:

SpeM: 12:849

INPM: 21.62%|

58X 50.42%

TouS: 48.67%)|

SRM: 20.03%

o

(a) Selection type (b) Crossover type  (c) Mutation type

Figure 2.29: Percentages of genetic operators used IR EA-

based approaches for DTL

=

Sampling methods: In Table 2.40 is shown the classification of MH-based approaches by type of sampling
method, and Table 2.42 shows the summary of this classification. Fig. 2.30(a) shows the percentages of
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each.sampling methods used by these approaches. In this figure can be observed that cross-validation
(49.7%) and hold-out (40.61%) are the sampling methods more utilized in the experimental studies
reporteddy the existing literature. In table 2.40 is shown that 11 approaches use the full datasets in
their experimental analysis and five studies do not report experimental results.

Performance measures:\,In Table 2.41 is shown the classification of MH-based approaches by performance
measure, and Table 243 shows the summary of this classification. Fig. 2.30(b) shows the percentages
of each performance'measure used by these approaches. In this figure can be observed that accuracy
(42.2%) and size (27#66%) are the performance measures more utilized in the experimental studies
reported by the existing literature. In table 2.41 is shown that misclassification cost, misclassification
error, and time also have beendised in the experimental studies.

Table 2.40: Classification of MH-based approaches by Table 2.41: Classification of MH-based approaches by

type of sampling method. type of performance measure.

MH Type MH CV HO FD NA _Total MH Type MH Acc Size ME MC Time Other Total
S8 GRASP 1 1 58 GRASP 1 1 2
SLS 1 1 SA 3 7 5 1 16

SA 3 3 2 8 SLS 1 1 2

TS 3 3 TS 1 2 2 2 7

EA ES 3 3 EA ES 3 3 1 7
LGA 26 10 3 3 42 LGA 30 21 4 3 7 5 70

TGA 12 9 1 22 TGA 19 16 2 7 2 46

GP 24 30 3 1 58 GP 3 18 11 1 2 9 79

CEA 2 6 8 CEA 8 2 12 22

DE 2 2 DE 2 2

GE 2 2 GE 1 1 1 1 4

GEP 2 1 1 4 GEP 4 4

S1 ACO 1 6 7 51 ACQ 5 5 2 4 16
P50 2 2 4 PSO 3 1 1 5

Total 82 67 11 5 165 Total 119 78 28 4 24 29 282

Table 2.42: Summary of MH-based approaches by type Table 2.43: Summary of MH-based approaches by type

of sampling method. of sampling method.
MHType CV HO FD N/A Total MHType Acc Size ME" MC Time Other Total
Ss 8 3 2 13 SS 6 22 7 3 38
EA 71 58 7 5 141 EA 105 50 18 4 W7 29 223
SI 3 6 2 11 SI 8 6 3 4 21
Total 82 a7 11 5 165 Total e 78 28 4 24 29 282

Statistical tests: In Table 2.44 is shown the classification of MH-based approaches by statistical‘test, and
Table 2.45 shows the summary of this classification. Fig. 2.30(c) shows the percentages of each
performance measure used by these approaches. In this figure can be observed that t-test (29.2?%),
the averaging over the datasets (23.4%) and the Friedman test (21.88%) are the statistical tests more
utilized in the experimental studies reported by the existing literature. In table 2.44 is shown!that
Wilcoxon test also has been used in the experimental studies to compare two algorithms.
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Table 2.44: Classification of MH-based approaches by type of statistical test.

MH Type MH Avg WTL t-test ANOVA Wil-t Fri-t KW-t Total
58 GRASP 1 1 1 3
SLS 0
SA 1 1 2
TS 1 1 2
EA LGA 8 9 2 1 3 25
TGA 3 4 1 1 9
GP 1 3 2 4 4 14
ES 2 2
CEA 2 2
DE 2 2
GE 1 1
GEP 0
SI ACO 1 1 2
PSO 0
Total 15 4 19 3 i) 14 3 o4

Table 2.45: Summary of MH-based approaches by type of statistical test.

MH Type Avg WTIL  t-test ANOVA Wit  Fri-t KW-t Total
SS 3 1 2 1 7
EA 12 3 17 2 5 13 3 55
SI 1 1 2
Total 15 4 19 3 6 14 3 64

2.5.6 Final remarks

DTI algorithms stand out of other machine learning techniques to build predictive models from data, since
they are simple procedures producing accurate models with a high level of expressiveness and interpretabil-
ity, unlike other classification techniques. Three types of strategies to implement MH-based approaches for
DTTI have been identified in this thesis: recursive partitioning, global searchi"and subsequent optimization.

The principal strategy in which MHs have been implemented for DTIs to realize a global search in
the search space. On the other hand, MHs-based approaches for DTI implementing.d recursive partitioning
strategy have been applied to replace the traditional splitting criteria into the induetien process. These ap-
proaches can so& the selection bias problem by adjusting their fitness function, and alse can improve the
construction of multivariate test conditions to induce oblique and non-linear DTs. However, in them, the
overfitting and the instability of small changes in the training set persist since these problems are inherent
to the greedy strategy. Finally. in the case of subsequent optimization, this strategy is tarely used and is
applied to improve the performance of a previously induced DT with some other approach.er to introduce
soft conditions in the tree.

The use of MH for DTI has pmvigj a new approach to building classifiers with better perfopmance,
especially by their ability to perform a global search in the solution space. Even though its apﬂir!ation
to induce DTs began 25 years ago, it currently presents many opportunities to study and new challenges,
since there are characteristics of the MHs that must be analyzed in the context of the machine learding)
Several research areas could be developed, such as the application of new single-solution based MHs or
improvements to known methods that have been recently published. Another area of potential development
is the application of SI-based methods for DTI, proposing schemes to allow an efficient search in the DT
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Other: 15.62%

Fri-t: 21.88%

ttest: 29.69%

Acc: 42.2%

(a) Sampling rr@ (b) Performance mea- (c) Statistical test

Figure 2.30: Per(:enl:age&‘e lements included in the experimental studies.

space using the operators defined to update t ts or particles in the swarm. Finally, the use of HH to
build algorithms allowing the mducuor%ﬂ. isas rategy that has been gaining interest in recent years.
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Chapter 3

Decision tree’induction with the differential
evolution algorithm

All life evolves by the differential survival of
replicating entities

Richard Dawkins, The Selfish Gene

HREE DE-based algorithms for DTI arewdeseribed insthis chapter. First, DE is applied to find a near-
T optimal hyperplane splitting a set of traming instances,in.arecursive partitioning strategy to induce one
oblique DT. Nexl, two procedures to conduct a globalssearch to_find a near-optimal DT are proposed: one to
build oblique DTs, and the other to induce axis-patalle]l DT.

3.1 OC1-DE method to induce an oblique decision tree

In this thesis, a method to induce an oblique DT using DE/rand/1/bin in‘arecursive partitioning strategy is
introduced. This method, nana OC1-DE, is similar to the OC1 system [261 ].and its GA-based variant [59]
but applies the DE algorithm to finding a near-optimal hyperplane at each internal node of an oblique DT.
Since the task of finding a near-optimal hyperplane with real-valued coefficients is,an optimization problem
in a continuous space, DE operators can be applied without any modification, and the OC1-DE method
should induce one better oblique DT.

él.l Recursive partitiong strategy to induce oblique decision trees

When a recursive partitioning strategy is implemented to induce one oblique DT, the classification method
starts finding the hyperplane that best splits the training instances into two subsets. This hyfla'plane will
be used as test condition of a new internal node that is added in the DT. This procedure is applied\for each
instances subset previously created until a leaf node is created. Hyperplane quality is estimated gh a
splitting criterion measuring the impurity of a partition or other discriminant value. Finally, a pruning process
is carried out to reduce the tree overfitting and to improve its predictive power. The splitting criterion can
be applied exhaustively to find the best hyperplane of all possible partitions of the set, or perform a search
guided by a metaheuristic. In particular, the OC1-DE method uses the DE algorithm for this purpose. In the
next paragraphs, the OCI variants first are described and then the OC1-DE method is detailed.
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3.1.2 O€1 variants

The OCl1 system.amplements a two-step process to search a better hyperplane dividing the instances set.
These steps are delifieated in the Algorithm 2. First, OC1 finds the best axis-parallel hyperplane 4 splitting
the instances set ¢ Next, it applies the following perturbation schemes:
3
. S.equemia! pertusbation: This is a deterministic rule adjusting the hyperplane coefficients, taking one
at a time and looKing-far its optimal value.
* Random vector perturbation: When the sequential perturbation reaches a local optimum, a random
vector is added to the cﬁ&nt hyperplane with the aim of looking elsewhere in the solutions space.

Finally. the OC1 system rettwns as the best hyperplane to the one selected between the best-perturbed
hyperplane /: and the best axis-paral yperplane h°. This algorithm requires two parameters to control the
iterative process: The number of restarting steps, and the number of random perturbations.

Algorithm 2 Hyperplane selection proposed’in the OCI system (based on [261]).
function OCl(a,¢,R,J )
Input: The set of attributes (&), the instances set (¢), the number of restarting steps (R), and the
number of random perturbation ().
Output: The best hyperplane (72¢59.

1+ BESTAXISPARALLELHY PERBEANE (a, ¢)
for eachi€ {1,...,R} do
A random hyperplane if i AT,

I otherwise,

h o+

(A): repeat
hP +— SEQUENTIALPERTURBATION(A) > Perturbneach of coefficients of /1 in sequence
if f(h”,¢) is better than f(h,¢) then
h«— h?
end if
until (1”7, ¢) is not better than f(h, )
for each jc {1,...,7} do
hP +~ RANDOMVECTORPERTURBATION(f) - Random«ector perturbation of /
if f(h",¢) is better than f(h,¢) then
h <« h?
go to (A)
end if
end for
ko if f(h,¢) is better than f(h° @),

pbest o o '
h"  otherwise

end for

return APest

end function

Based on the OC1 system, Canti-Paz and Kamath [59] implement the OCI1-GA algorithm in whieh
replace the OCI1 perturbation schemes by one GA. This method evolves a population of real-valued chro-
mosomes to find a near-optimal hyperplane evaluating its quality through the twoing rule. The OCI1-GA
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algorithm wses_.a” pairwise-tournament-based selection operator, and one uniform crossover operator, but
does not use’a mutation operator.

The OCI1-GA algorithm returns as the best hyperplane to the one selected between the best hyperplane
in the last population’and the best axis-parallel hyperplane. This algorithm sets the population size based on
the number of attributes*in the training set, as well as uses a fixed number of generations. Algorithm 3 shows
the structure of this GA-based approach to find near-optimal hyperplanes.

Algorithm 3 Hyperplane selection using the OC1-GA algorithm (based on [59]).
function OC1-GA(a,¢)
Input: The set of attributes (@), the instances set (@).
Output: The best hypefplan€ (421,

g+ 0
1"« BESTAXISPARALLELHY.PERPLANE(a, ¢)
if |¢] < 2|a| then
return /"
end if
X + Initial population of random hyperplanes with 10% of copies of x*P.
EVALUATE(Xp)
for each g € {1,...,25} do
X « TOURNAMENTSELECTION(X, ;)
X, + UNIFORMCROSSOVER(X()
EVALUATE(X,)
end for
% ¢ The best chromosome in X

KPS if f(aPe @) is better than £, 8)

Ko otherwise
best

hbest —

return h
end function

3.1.3 OCI1-DE method

The OC1-DE method implemented to find a near-optimal hyperplane is shown in Algogithm 4. This approach
is very similar to the OC1-GA algorithm: the axis-parallel hyperplane that best splits a set of training in-
stances 1s first obtained, and it is inserted in an initial population of hyperplanes randomty created. Then, this
population is evolved through several generations using the DE operators. Finally, the QCL-DE algorithm
returns the hyperplane selected between the best axis-parallel hyperplane and the best obliqueshyperplane in
the last population of the OC1-DE algorithm.

\
3.2 DE-ODT method to find a near-optimal oblique decision tree -

The DE-ODT method implements a global search strategy with the aim of constructing more accurate obigﬂ
DTs, and also to overcome the inherent problems of the recursive partitioning strategy. This method evolves
a population of oblique DTs encoded in fixed-length real-valued vectors.
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Algorithm4 Hyperplane selection using the OC1-DE algorithm.
function OC1-DE(a, ¢, CR, F, NP)
Input:~The set of attributes (a), the instances set (¢), the crossover rate (CR), the scale factor (F),
and the population size (NP).
Output: The'best hyperplane (4°°h).

g+ 0
1" + BESTAXISPAR AFLELHYPERPLANE(a, §)
« Initial population af random hyperplanes and one copy of 1°.
while stop condition isfiotfullfilled do
g+—g+1
X,
for eachic {INPT&
X' ¢ Target vector fromJ, ;
v « Mutated vector gen using (2.4)
u' « Trial vector construc eﬁﬁ\'ng (2.5)

X, « XU { {(i.u')} if f(ui{®))is better than f(x', ¢)

{(i‘x") } otherwise
end for

end while

2P« The best individual in X,

et KPS if f(abet @) is better than f (h°,6)
h otherwise

return Pt

end function

3.2.1 Linear representation of oblique decision tre

In the DE-ODT method, each candidate solution encodes only the internalaibdes of a complete binary oblique
DT stored in a fixed-length real- va.luavector (Fig. 3.1). This vector represents the set of hyperplanes used
as test conditions of the oblique DT. The main advantage of the linear represenpﬁpn is that it is utilized to
encode candidate solutions in several EAs such as GA, DE and ES and they M implemented for DTI
without any modification. Nevertheless, since these EAs use a fixed-length represefitation, it is necessary to
define a priori this length, and tha:an limit the performance of the induced DTs. In the BE-ODT method,
the size of the real-valued vector is determined using both the number of attributes and.tHe fumber of class
labels of the training set whose model is induced.

Since each internal node of an oblique DT has a hyperplane as its test condition, th f the real-
valued vector x' used to encode each i-th candidate solution in the population is fixed as 1, (d+ .where n,
is the estimate@@umber of internal nodes of a complete binary oblique DT, and d is the number/of,attributes
in the dataset. Considering that: 1) an oblique DTs is more compact than its univariate version, and that 2)

DT size is related to the structure of the training set, the DE-ODT method determines the v Re
based on both the number of attributes and the number of class labels in it. If the number of interna
of a complete hinary DT with height H is 2¢ — 1, and the number of leaf nodes of the same DT is 2}
heights can be obtained as follows:

H; = {logl(d-l—lﬂ. (3.1

65




Differential-Evolution-based methods for inducing Decision Trees

1l 2 3 4 5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28

Figure 3.1: Linear encoding seheme for the internal nodes of a complete binary oblique tree.

and
Hi = [log, (s)]. (3.2)

Using these equations, n, is determined.asfollows:

N, — 2m,a.!c1!.",-,H;]—1 1 (3.3)
[= 1 .
and, the size of the real-valued vector representing a sequene€ of n, hyperplanes for a training set with d

attributes is computed as follows:
n=neld+1). (3.4)

As an example, ﬂa hypothetical dataset with three numerical ibutes and three class labels is used to
induce an oblique DT, thend = 3 and 5 = 3. In this case, ;= {logz & 1-| =3andH, = {logz (3)+ l] =3.
Finally, n, = 2M#¥{33} _ | — 7. This implies that the oblique DT couldhave seven internal nodes. Finally,
one individual representing a candidate solution in the evolutionary pro¢ésshas 28 real-valued parameters.

3.2.2 Induction of feasible oblique decision trees

The DE-ODT method implements one three-stages procedure to map an obliqgue DT from a real-valued
individual of the population. First, x' is used to build the vector w' which encodes a,sequence of candlate
nodes of an oblique DT. Each node contains one hyperplane utilized to divide the trainingyinstances. Next,
w! is traversed to create a partial tree pT* composed only of internal nodes. Finally, to cﬁm the DT, a set
of leaf nodes are added in p7"” using the training set. This procedure allows inducing feasible oblique DTs
with a different number of nodes, although they are represented with a fixed-length para ector. Fig.
3.2 shows a graphical representation of this procedure.
10
1. Hyperplanes construction: Vector ' is used to build the vector w' representing the }!5

ce of
candidate intemal nodes of a partial DT. Since the values of x' represent the hyperplane c i

nts

contained in these nodes, the following criterion applies: Values {\ci oo xY, } are assigned.to
hyperplane h', the values {xin, e ‘-‘é(.urz} are assigned to the hyperplane /i*, and so on. For
JjeE {1, .. .,ne}, the coefficients of i/ are designed as follows:

hl = {~“E:J—1J<:d+1,l+k ke {1, d+1 }}. (3.5)
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These hyperplanes are assigned to the'elements of ! is assigned to w’i, I is assigned to wg, an so
on. The Algorithm 5 outlines the process to build w'drom x'. In Fig. 3.3 is shown an example of the
construction of a set of hyperplanes which.ére assigned to'the seven nodes of one candidate solution
x' for the hypothetical dataset previously deséribed. Once " is completed, it is used to create a partial
DT with only internal nodes.

Algorithm 5 Algorithm to build w' from x'.
function OBLIQUENV CONSTRUCTION(x', d)
Input: The real-valued parameter vector (x'), and the number of attributes (d) in the training set.
Output: The nodes vector (w')
for each j ¢ {1_‘---_‘1%} do
for each k € {1,...,d+1} do
hi —
end for
w} o (hf)
end for
return w' & Vector of internal nodes
end function

v
K= 1)(d+1)+k

2. Partial oblique decision tree construction: A straightforward procedure is applied to construct the
partial DT from w': First, the element in the initial location of w' is used as the root node of pT’. Next,
the remaining elements of w' are inserted in pT" as successor nodes of those previously added so that
each new level of the tree is completed before placing new nodes at the next level, in a similar way
to the breadth-first search strategy. Since a hyperplane divides the training instances into two subsets,
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1 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
\—|12|-0M}36\o4|19|u1|2 |4s|27k;4|02|01\56|16]52}52|91|12]05[19|3s|o4|457|?2|62}06|12|
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h':—0.da; + 5.6a,— 1.6a; = 5.2

I': 4.8a, + 2.7a,— 6.4a;<0.2 W -5.2a,+ 9.Ja,+ [.2a;< 0.5

W 0.4a,— 1.985+ Oa, < 2.1 B 1.9, + 3.9a, + 0.4a; <67

Loh': 1.2a, - 0.3a,+ 28a, 546 K 7.2a;+ 6.2a,— 0.6a; < 1.2+

Figure 3.3: Gonstruction of a set of hyperplanes from X

each internal node has assigned two suecessor nodes.

Algorithm 6 shows the steps appliedsto ereate pT* from w'. In this algorithm can be observed that V is
the set of valid internal nodes of pT? and-E is the set of edges representing each possible outcome of
each test condition in pT".

Algorithm 6 Construction of pT" from.a,
function OBLIQUEDTCONSTRUCTION(w')
Input: The nodes vector (w').
Output: The partial DT with only interndl nodes{pT %y

Ve {wi} > Set of internal nodes of pT'
E+ @ »Set of edges of pT' used to define the successor nodes
k1
for each j € { nc.} do
1+0
while k < n. Al <2 do
k+k+1
141
Vevu{w}
E— Eu{(w,w})}
end while
end for
pT! + (G(V,E) w})
return pT" > partial DT with only, internal nodes
end function
&
In Fig. 3.4 is shown an example of the construction of a partial oblique DT from w'. In t ure can
be observed that w¥ is selected as the tree root node, w}, and w/, are placed as the successor n fwi,
wi and wg are designed as the successor nodes of w%, and so on. The partial oblique DT con ed
for this example is pT" = (G’ (V.E), w’i), where V and E are formed as follows: .O

V= {w’i Jwh wh, wh wh, wh ,wi;} 3%
E= {(w’i , w;) (wh, w;). (wh, wfi) (wh, w;). (wh, w;) (W, wi;)} ’
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W= [ W W [ w [ ]
1 2 3 4 5 [

h': 1.2a, - 0.3a, + 2.3a, 3.6

W' 4.8a, + 2.7a, - 64a,= 0.2

W0 la, + 5.6a,— 1.6, < .F._"'le’: —5.2ay + 9.0ay + 120, = 05| [W": 1.9, + 3.9a, + 0.da, =—6.7) [0 7.2, + 6.2a,~ (.60, 1.]]

true false trug’” false true false true false

Figure 3.4: Construction of a partial oblique DT pT".

3. Decision tree completion: In the final stage‘of this mapping scheme, several leaf nodes are added in
pT' by evaluating the training set. One instance set ¢ is assigned to one internal node @ (1 to the root
node), and by evaluating each elémentin ¢ withthehyperplane associated to m, two instances subsets
are created and assigned to the suce€ssor nodes 0f @. This assignment is repeated for each node in
pT'. Two cases should be considered

(a) If @ is located at the end of a branch'of p7’, theh twa nodes are created, and they are designated
as successor nodes of @. Each instances subset is'assigned to each created node, and each one is
labeled as a leaf node using as its class label.the one'that has the highest number of occurrences
' the instances subset assigned to it.

(b) If the number of instances assigned to @ is Tess than one*previously defined threshold value 7,
or if all instances assigned to it belong to the same class, then@ is labeled as a leaf node. The
majority class { of these instances is designed as the class label/0f the leaf node, and its successor
nodes are removed, if they exist.

Algorithm 7 summarizes the process to complete the oblique DT from W’his procedure uses a
ﬁrst—in—ﬁrst—ounF[FO) queue to assign the instances of the training set i gaeh node of the DT. In
this algorithm can be observed that V' is the set of both internal nodes an‘d,ﬁaf nodes of T', each
one associated with an instances subset. Fig. shows an example of the tree completion through
this mapping scheme. In this figure is shown that all the instances assigned to’wLaqd ws have the
same class label, so they are designed as leaf nodes, and the successor nodes of wj @e‘pmved from
the tree. On the other hand, since wy is the ending node of a branch, its instances E@split using
its hyperplane, the instances subsets produced are assigned to two new leaf nodes, and theif'majority
classes are designated as their class labels. In this figure can be observed that this tree has t)dl:l ternal
nodes and four leaf nodes. r\

3.2.3 General structure of the DE-ODT method

Algorithm 8 shows the structure of the DE-ODT method proposed in this thesis. This procedure requires
to identify the training set used to induce an oblique DT, as well as the three control parameters applied by
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W' . 2a,— 0.3a,+ 2.3a; < 3.6

¢ 5.60, - 1.6a,<5.2

]

Figure 3.5: Conipletion of an oblique DT using pT" and the training instances.

1

the DE algorithm, and the threshold valde 7_used to determine if a node is labeled as a leaf node. First,
the DE-ODT method uses the READTRAININGSET method to get the attributes vector a, the vector of class
labels ¢, and the instances set 1. Next, the valuevof d and n are computed. Then, the DE algorithm evolves a
population of real-valued individuals encoding oblique DTs. DE selects the best candidate solution APtin
the last population as the result of its evolutionary process. Finally, a near-optimal oblique DT is constructed
applying the procedures described in the pteviousiparagraphs. In particular, the F parameter in the DE-ODT
method gradually decreases as the evolutionafy processprogresses. This decrement allows more exploration
of the search space at the beginning of the eyolutionary process, and with the passage of the generations, it
is tried to make one better exploitation of promising areas of:this space [79].

Since the DE-ODT method uses an a priori-definition  ofsthe size of the real-valued vector, it is possible
that some leat nodes in the DT do not meet the following conditions: the size of its instances subset is less
than 7, or all instances in the subset belong to the'same class” In.this case, the DE-ODT method applies

OBLIQUETREEGROWING procedure to replace this node withsa sub-tree whose leat nodes fulfill these
conditions. This method implements a recursively partitioning strategy guided by some splitting criterion.
However, it is desirable that this refinement is used only when the es'tima_ted number of nodes n, does not
permit to build a DT with acceptable accuracy. The Algorithm 9 shows‘thg procedure to refine the best 7"
constructed with the DE-ODT method. In this work, the twoing rule is used far the OBLIQUETREEGROW-
ING procedure as the splitting criterion.

3.3 DE-ADT method to build axis-parallel decision trees

Unlike the previous sections, where two approaches to induce oblique DTs are describedsthe DE-ADTgpy
method to build axis-parallel DTs is presented in this section. The DE-ADTgpy method implements a global
search strategy where DE evolves a population of real-valued vectors encoding both thelattrib and the
threshold values associated with the numerical attributes evaluated in the internal nodes of a DT.The size of
the real-valued vector is estimated a priori according to the characteristics of the dataset whose*Classification
model is constructed, and a scheme to map a feasible axis-parallel DT from this vector is appliedyusing both
the SPV rule and the training instances. A detailed description of the DE-ADTgpy elements is provided in

the following paragraphs. O
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Algorithm/7 Cempletion of an oblique D'nsing both pT" and the training instances.
function OBLIQUEDTCOMPLETION(pT',1,T)
]nputmpartial DT (pT7), the training set (1), and the threshold value used to assign a leaf node
(7).
Output: Tl([m(l"') mapped from an individual in the population.
h + Hyperplane assigned to the root node of pT*

o'« (h,1) > The training set is assigned to the root node
Vi {ow'}

E'+— @

O + Empty queue - FIFO queue used to traverse the DT

ENQUEUE(Q, ©')

while Q is not empty do
@ + DEQUEUE(Q)
h <+~ Hyperplane assigned t6 @
¢ « Instances set assigned to.@

@ « INSTANCESETPARTITION(0 /i) i> Instance subsets obtained by classifying ¢ using h
for each j € {1.2} do
£ + MAJORITYCLASS(¢/) t> Majority class label of the instances in ¢/

< The number of instafices in ¢/ with { as class label
if (N (@) # 2 A |97| # 7570 | > ©then

h + Hyperplane of Nj'(w) > The hyperplane the j-th successor node of ©
; (h,qbi) »Internal node with the j-th instance subset of ¢
ENQUEUE(Q, ©;)
else
; + (£,¢7) > Leaf node with { as class label
end if

Vi ViU {(w))}
E + E'U{(0,0)}
end for
end while
T+ (G(V.E'), o)
return T = DT with/bothvnternal and leaf nodes
end function

&3.1 Linear encoding scheme of candidate solutions

The linear encoding scheme proposed in this work associates each parameter of an irffividual with each
attribute and with each threshold value used in the test conditions of an axis-parallel DT. Each test condition
of an axis-parallel DT evaluates only one attribute to divide the training set. If one calegori?:ﬁn@fibute is
evaluated, the training set is split into as many subsets as values there are in the domain of the attr . On
the other hand, if the evaluated attribute has numerical values, a threshold value is used to split th ining
set into t\nsubsets, and the DTI method must determine a suitable threshold value optimizing some s litt
criterion. Therefore, if the vectors y' and z' are used to represent the sequence of attributes and the seq
of threshold values, respectively, an individual ' in the population is the concatenation of y* followed by z',
ie,x' =y'~7, as is shown in Fig. 3.6. Furthermore, if n, and n, are the numbers of elements in y* and 2/,
respectively, the size of x' is n = n, +n..
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Algorithm 8 General structure of DE-ODT method.
procedure DE-ODT (trainingSet, CR, E, NP, 1)
Input:~The training set (trainingSet), the DE parameters (CR, F and NP), and the threshold value
l&o assign a leaf node (7).

(a,c 1) RF\AfTRAININGSET(rrainingSer)

d « |a| & Number of attributes
1, +— Number of estimated internal nodes computed using (3.3)

ni—ne(d+1) = Size of parameters vector
%t DIFFERENTIALEVOLUTION(CR, E, NF, n)

w < OBLIQUEN VCONSTRUCTION (x**) > Nodes vector
pT + OBLIQUEDTCONSTRUCTION(w) > DT with only internal nodes
T + OBLIQUEDTCOMPRETION(pT,1,T) - Complete DT
T <+ OBLIQUEDTREFINEMENT(T, T) > Refined DT
T < OBLIQUEDTPRUNING(T, 7) & Pruning DT

end procedure

e 1 1 I I I O

e altributess thresholds

Figure 3.6: The structure of one individualto encode a sequence of attributes and a sequence of threshold values.

The DE-ADTgpy method uses the same scheme‘described.in.the DE-ODT procedure to estimate the
height of a complete binary DT. The DE-ADTgpy'method applies the estimated heights defined in equations
3.1 and 3.2 to calculate the size of y' as follows:

1

n, = 2max{!ﬂ-.ﬁ;} —1. (3.7)

Since n, is not less than 4, each attribute in the training set is associ ith one or more elements of y*
through an auxiliary vector p. For each j € {1‘ ooy hy } the location of ea ibute in the vector a is stored
in p as follows:
pj=jmodd. (3.8)

On the other hand, as 7 identifies the threshold values of the numerical aItrg ssociated with yi, its
size depends on the size of y. If the number of numerical attributes in the training seti coxlted as follows:

d,.=‘{ke{1,...,d}:D(ak)§R}“ d (3.9

n. 1s obtained using the following equation:

)
n::d,l%J+‘{ke{1....,d}:D(ak)QRAdl%J+k£ny}‘. ‘S0

The first term of (3.10) refers the number of numerical attributes used when a is entirely associa&%

), and the second one represents the number of these attributes used when a is partially associated with y',
As an example, if a hypothetical dataset with four attributes (two categorical and two numerical at-

tributes) and three class labels is used to induce a DT, then d = 4 and s = 3. In this case, ; = {logz (5)+ 1] =
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Algorithm¥ Refinement of a DT.
function OBLIQUEDTREFINEMENT(T", T)
Input: DT (T7) and the threshold value used to assign a leaf node (7).
Output: refined DT (7).

' + Root n&é BTA ¥
V'« Nodes of 7
E' « Edges of T'
Q + Empty queue
ENQUEUE(Q, @)
while Q is not empty do
o + DEQUEUE(Q)
if [IN*(w € V)| # o thin
for each j € {1.2} do

@ N}'[m eV’ > j-th successor node of @.
ENQUEUE(Q, ®;)
end for
else > The node is labeled as a leaf node
¢ « Instances set in @
£ + MAJORITYCLASS(¢) - { is the majoritatian class label in @

 + The number of instances-in-¢ with { as class label
if (0] # wA 9| > 7) then
(V' E") « (V',E') UOBLIQUETREEGROWING(®, T) > @ is replaced by a sub-tree
end if
end if
end while
T+ (G(V.E'),0)
return 77
end function

4and hy = [log, (3) + 1| = 3. Finally, n, = 2m{43} _ | — 15. This implies that four attributes are asso-
ciated with 15 elements of y'. Fig. 3.7 shows an example applying the attributes mapping scheme with the
hypothetical dataset, in which the positions of the attributes vector (m 42, as .a4) are associated three times
in complete form and once in partial form in ' through p. Since y' has assigned seven numerical attributes,
n. =T and x* represents a sequence of 15 attributes, followed by a sequence of seven thfeshold values. In
Fig. 3.8 is shown as x' is completed with the threshold values.

II.‘_

T T TTTd

1 2 3 405 6 7 819 10 1 12113 14 15

)
p=tl2]3]aft]2]3]af1]2]3]a]1]2]3] (‘\
O

Figure 3.7: An example of the application of the attributes mapping schema.

Once the size of x' is calculated using the structure of the training set, DE evolves a population &f
candidate solutions using the training accuracy of the constructed DTs as their fitness values.

73




Differential-Evolution-based methods for inducing Decision Trees

n.

, 9 10 11 12,13 14 15]16 17 18 19,20 21,22
]IC[C|N]N!C|C[N [
[

[
ctx 1
2232 2]3]
T = |

Figure 3.8: Anexample of the construction of x',

F 3

3.3.2 Induction of feasible'axis-parallel decision trees

The DE-ADTspy method uses ghe procedure similar to that desnbed for the DE-ODT method, to map an
axis-parallel DT from an individual in the population. Fig. 3.2 shows a graphical representation of this
procedure.

1. Nodes vector construction: Th “ADTspy method uses the SPV rule to build an ordered sequence
of attributes from x'. This rule c s an integer-valued vector o' based on the elements of y': the
location of the lowest value in y is the first element of o', the location of the next lowest value in y' is
the second element of o', and so on. Formally, for each j & { I...., n_\.}, the SPV rule assigns the k-th
location of y' as the j-th element of ¢' using-the following equation:

0;-=min{k€ {l,...,n_\.}\{o’i,...,o’;_l} Vi s/min{y} : 1 € {ln‘}\{o’loj_l}}} (3.11)

On the other hand, to adjust the threshold values represénted by 7' so that they belong to the domains

of the numerical attributes in a, another auxiliary vecter, riseonstructed. If for each JE { 1,..., n, } q

1s the location in zi of the threshold value assoefiated withsthe.numerical attribute a I that is computed
7

as follows: )
p =d,{ﬂ + ‘{k e {L,..7d} :D(a)EBAk < p, }‘. (3.12)
J

then .'("f represents the threshold value of a rye obtained applying the following equation:

(2 —xm) ( max{D(a, )} —min{D(a, ) })
. L . (3.13)

.'(j = min{D[a%}} +

max min
X — ]
Once o' contains the ordered locations of y', and ¢/ holds the threshold values as ed with the nu-
merical attributes encoded in y', these vectors are used to build the vector w' reprefenting the sequence
of candidate internal nodes of a partial DT. For each j € { L.... ,ny}, the j-th elem wi is:

(a;,“,_ ‘ :;') if D(a, ) C R,
) I

wh =
i .
dp ) otherwise.
ol

(3.14)
Algorithm 10 outlines the process to build w' from x. Once w' is completed, it is used to cre,(e)
partial DT with only internal nodes.

Fig. 3.9 shows an example of the application of SPV rule to build o' with the positions of ¥ using the
hypothetical dataset. According to this rule, the smallest value of y' is located at position 13, so this
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AlgorithmA0 Algorithm to build w' from x'.
function NV CONSTRUCTION(x')
Input: The-eal-valued parameter vector (x').
Output: The nodes vector (w')

Vo (fl q AW T ) > Sequence of attributes
& (_rj;\ 1 _.x_ftv{ x'-~+,,:) > Sequence of threshold values
fnreach'j = {'1_,.. :
oj- ¢ j-th minor
end for :
for each j € {1,...,n_v}m
k— o"f
if D(a,, ) € R then
g + Location in 7' of tl?&:'&'hold value associated with a,, computed by (3.12)
1y < Threshold value of a Bh@ined using (3.13)

lent of y' determined using (3.11)

w} — (am,r(;) > Internal node using a numerical attribute
else
wj- < (a m) - Internal node using a categorical attribute
end if
end for
return w' & Vector of internal nodes

end function

x'= [9.6]7.8[0.5[3.0[0.7[0-4] 10 10 [0.3]6. 62
12 3 4 5 6 7 8 9 10l

V'= P-6[78[03[3.0[0.7[0A] 10| 10]0.3[6.6 ]2 [BS] 0 [9-6]10]
Ordered )’ |

v

y
| 0 |0.3|I].5|0.7|1.B 2.1|3.D|6.6|T.8|9.4I9.6 9.6 1(]|ll]|1(]|

YV Y YYYY
[3]5i2[tifafiof 26 14]1[7]8]15]

3 4 5 6 7 8 9 1011 12 13 14 15 )
Figure 3.9: An example applying the SPV rule to build o'.

[

o'= [13]
1

L] =1 O

position is assigned as the first element of o', the second smallest value of y is focated at position 9,
so this position is assigned as the second element of o', and so on. Fig. 3.10 shows$,an example of
the construction of ¢ from z'. The domains of attributes in the hypothetical dataset are:"a))= {cz, B }
a={y,k,p}, a3 =[1.5,3.8], and a; = [0.6,9.8]. In accordance with Eq. (3.12) and"Eg, (3.13), p
is used to associate each threshold value with its corresponding numerical attribute. Finally,.in Fig.
3.11 is shown an example of the construction of w' from both o' and . In this figure is observed that
the first two positions in w' are related with the categorical attribute a;, and the numerical attribute’as
along with the first threshold value in ¢ are located in the third position of w'.

2. Partial decision tree construction: The construction of a partial DT from w' is very similar to the
one described for the DE-ODT method, but several considerations must be applied when an internal
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Figure 3.10: An example of the construction of i
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Figure 3.11. An example oi lhe construction of w'.

node use only one attribute in its_test condition. Since the evaluated attribute can be numerical or
categorical, the number of successetnodes b ofaninternal node is calculated based on the domain of
the attribute used in its test condition, as follows:

2 if Do) C R,

b=
|D[(x}| othérwise,

(3.15)

n1ere « is the attribute assigned in w'.

Since pT' is constructed using the ordered sequepce of eler@lﬂ of y', it is likely to contain one or
more redundant nodes, i.e., nodes whose test condition does notsplit the instances set. The following
mleSﬁe applied, to ensure that pT’ does not hold any redundant flode:

Ry: A categorical attribute can only be evaluated once in each bmnw the tree.

Ry: A numerical attribute can be evaluated several times in the same brasich of the tree if and only if
it uses coherent threshold values.

R5: The successor nodes of one internal node with two branches of the ﬁeycan(lot use the same
categorical attribute.

Therefore, when an element in w' does not satisfy the previous rules, it is not used torergate an internal
node, and the procedure continues analyzing the next item in it. Algorithm 11 shows ps applied
to create pT' from w'. In this algorithm can be observed that V is the set of valid internalnddes of pT",
and E is the set of edges representing each possible outcome of each test condition in pTi

Fig. 3.12 shows the pT' constructed from w' in which is observed that only seven elements inw’ have
been used to build the internal nodes of pT". The elements w), w;, and w}, do not satisty the rulé 1 due
to they encode internal nodes evaluating the categorical attribute a, but it is evaluated in the root node
of p')‘"i and none of its branches must re-evaluate this attribute. Furthermore, the elements w;, wi 4
and w}s do not satisfy the rule 2. The internal node encoded by w{’;’ must be a successor node of that
encoded by w4 but, as the test condition of wi (a3 > 3.0) is not congruent with that of w}, (a3 > 3.4,
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AlgorithmA1 Cénstruction of pT" from w'.

function DTCONSTRUCTION(W')
Input: The-nodes vector (w).
Output: The partial DT with only feasible internal nodes (pT").
Ve {wi} & Set of internal nodes of pT!
E+—o - Set of edges of pT' used to define the successor nodes
for each j ¢ {1,...,;1\.} do
if w; € V then
b + Number©f possible successor nodes of w; using (3.15)
ke j+1
while k < n, A
a « Attribute assigned in w!
if & satisfies Ry and Rz wi satisfies R3 then
Ve vu{w}
E < EU{(w), wi )}
end if
ke k+1
end while
end if
end for
pT' + (G(V,E) w})
return pT’ & partial DT with only internal nodes
end function

N+(w} €V)|<bdo ©> Insertion of valid successor nodes

the procedure does not use this node. The samereasoning applies to elements w’i 4 and w"ls since they
can not be used to construct successor nodes of the internal nade encoded by w:;,, Finally, the elements
wi, and w{, are not used in the construction process due to the¥ encode internal nodes that do not
satisty the rule 3. The internal node encoded by w"m cannot be assigned as a successor node of the one
encoded by w4, due to it evaluates the same categorical attribute used.by an internal node previously
assigned as successor node of that node. The same reasoning applies'te the internal node encoded by
the element w},.

3. Decision tree completion: Algorithm 12 summarizes the process to complete the DT from pT". Fig.
3.13 shows an example of the T' completion through this mapping scheme using,the hypothetical
dataset. In this figure is shown that the nodes five and eight have assigned instancesets with the same
class label so that they are labeled as leaf nodes, and the succesar nodes of the node number five are
removed from pT’. On the other hand, the node number seven is the ending node W)ch so that
its instance set is split using its test condition. The instance subsets produced are assighedto two new
leaf nodes, and the_majority class is assigned as the class label of each one of them. In this ﬁgucan
be observed that 7" has three internal nodes and four leaf nodes.

3.3.3 General structure of the DE-ADTgpy method

1
Algorithm 13 shows the structure of the DE-ADTgpy method proposed in this work. First, the DE-ADTgpy
method uses the READTRAININGSET method to get the attributes vector a, the vector of class labels ¢, and
the instances set 1. Next, the values of d and s are computed, as well as the values of ny, n., and 1 used to
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Figure3.12% Parcial DT constructed from w'.

build the initial population of candidate solutions) Then, the DE algorithm evolves this population to obtain
the best candidate solution P!, Finally, a near-optimal DT is constructed applying the procedures described
in the previous paragraphs. The DE-ADTgpy method refines the DT by replacing non-optimal leaf nodes
with sub-trees. Finally, the oblique DT is-pmned to-rediice the possible overfitting generated by applying
this refinement.

As in the DE-ODT method, the F parametexgradually decreases as the evolutionary process implemented
in the in the DE-ADTgpy method progresses.-Adse, the parameters in a vector representing an axis-parallel
DT can be constrained or not. Unconstrained parimeters ‘aré associated with the sequence of attributes,
and constrained elements represent the threshold yalues used“tosbuild the test conditions with numerical
attributes. When a parameter value violates a constraint,’it is adjusted to the midpoint between its previous
value and the boundary-value of the violated constraintias follows:

1. mnax ol M
7 3 (.r),- + ) if oy > x5,
i 1. nin T min
Wy = q () il < (3.16)
u;- otherwise.

This mechanism to handle constraints allows asymptotically approach the space‘boundaries [276].

Figure 3.13: DT completed using the training set.
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Algﬂthm 12 Completion of a DT using both pT’ and the training set.
function D COMPLETIDN(pT' 1, T)
Input: artial DT (pT"), the training set (1), and the threshold value used to assign a leaf node
(7).
Output: Tl([m(l‘"'} mapped from an individual in the population.
o 4+ Attribute asigned to the root node of pT*

o'« (a,t) > The training set is assigned to the root node
Vi {ow'}

E'+— @

O + Empty queue - FIFO queue used to traverse the DT

ENQUEUE(Q, ©')
while Q is not empty do
® — DEQUEUE(Q)
o + Attribute asigned to @
¢ « Instances set assigned in.@
@+ (Ntwoe V}| t> Number of succesor nodes assigned to @ in pT"
b + Number of successor nodes of @ using (3.15).
P — INSTANCESETPARTITION(¢, &) = Instance subsets obtained by classifying ¢ using «
for e.achje{l }do
¢+ MAJORITYCLASS(W) > Majority class label of j-th instances set in ®
y « The number of instances'm-¢/ with {-as class label
if (j <@Al¢/| # wA|P/| 1Y then
o + The attribute used by '\Fj‘(m)

I (G.W) > Internal node with the j-th instance subset of ¢
ENQUEUE(Q, ®;)
else
u ; + (£,07) > Leaf node with { as class label
end if

ViV U{(w))}
E «E'U{(0,w;)}
end for
end while
T+ (G(V,E'),e)
return 7' > DT with both internal and leaf nodes
end function

3.4 Final remarks

The use of DE to induce oblique DTs is a natural approach to apply this MH since it evolves the hyperplane
coefficients in the case of implementing the strategy of recursive partitioning, and of a set of hypérplanes
when it comes to conducting a global search to find one near-optimal oblique trees. On the otherhand,
inducing axis-parallel DTs is a more difficult task since it is necessary to define a scheme to map the DT
elements (attributes, thresholds for numerical attributes, and class labels) within a real-valued vector. Sinee
the assignment of attributes is a problem of ordering values, it is possible to apply some technique to map*a
real-valued vector within an ordered sequence of integers.

79




Differential-Evolution-based methods for inducing Decision Trees

1
Algorithm 13 General structure of the %_—ADTSPV method.

procedure DE-ADTgpy(trainingSe

. F. NP, 7)

Input: The training set (rminingSa!f?h;e DE parameters (CR, F and NP), and the threshold value

used to assign a leaf node (7).

(a,c,1) 4 READTRAININGSET(frainingSet)

d + |a|
5+ |c]

> Number of attributes
> Number of class labels

1, +— Number of estimated internal nedes.computed using (3.7)

for each j ¢ {1,...,;1_\.} do

pj + Position of an attribute in & tsing*(3.8)

end for

n. +— Number of threshold values computed using (3.10)

n 4 ny+n;

> Size of parameters vector

At DIFFERENTIALEVOLUTION(CR, E NP)

w + NVCONSTRUCTION (x*%)
pT + DTCONSTRUCTION(w)
T + DTCOMPLETION(pT,1,7)

- Nodes vector
> DT with only internal nodes
> Complete DT

T + DTREFINEMENT(T,T) > Refined DT
T + DTPRUNING(T,7) © Pruned DT
end procedure
)
' o
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Chapter 4

Experimental study

The ideas of science germinate in a matrix of
established knowledge gained by experiment;
they are not lonesome thoughts, born in a
rarified realm where no researcher has ever
gone before

Seth Shostak

N this chapter the experimental study carried out to analyze the performance of the three DE-based meth-
IGdS for DTI implemented in this thesis is detailed. Firsty"a description of the datasets used in this study as
well as the definition of the parameters of each method is givensThen, both the model validation technique
used in the experiments and the statistical tests appliedto evaluate the results obtained are outlined. Finally,
a discussion about the performance of the DE-based.methods is‘proyided.

4.1 Experimental setup
4

The three DE-based methods are !nplementad in the Java language using the JMetal library [95]. The
parameters used in the experiments are described in Table 4.1. The mutation'seale factor is linearly decreased
from 1.0 to 0.3 as the evolutionary process progresses, and the crossover rate is fixed in 0.9. At the beginning
of the evolutionary process, if a high mutation scale factor is used, the mutatedvector can be located in
different areas of the search space, allowing a better exploration. As the process,progresses, the target
vectors approach each other, so that a reduced factor allows better exploitation of promising areas in the
search space. A high crossover rate is used to allow znreat diversity of the trial veetors so that a better
competition can be made in search of a better solution. Furthermore, following the suggqlﬁ(} of Storn and
Price [340], the population size is adjusted to 5n, but with 250 and 500 individuals as lower andaipper bound,
respectively. These bounds are used to ensure that the population is not so small as not to alere@sonable
exploration of the search space and is not so large as to impact the runtime of the algorithm. The fitness
functions used in the DE-ODT method and the DE-ADTspy algorithm compute the training accurdey of
each DT in population, but the twaing rule is used as fitness measure in the OC 1-DE method. Congething
the number of iterations of the process, the OC1-DE method uses a smaller number of generations than.that
those implementing a global search. This is because when DE is used to find a better hyperplane splitting-the
training instances, using a higher number of iterations promotes overfitting of the obtained solution, whith
is a near-optimal local solution, but affecting the predictive pertormance of the induced DT.
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1
On the ether hand, since the best DT obtained by the methods conducting a global search greﬁned with a
procedure implementing a recursive partitioning strategy, it must be pruned to reduce the ponble overfitting
generated to aﬁp@g this refinement. In these methods, and in the OC1-DE algorithm, the Error-Based
Pruning (EBP) aMgh [303] is then applied since it produces DTs with an improved accuracy using only
the training set [47] Fﬂﬁlly, the DE-based methods need to define a threshold value to determine whether a
node should be labeled ‘as'one leaf node.

Table 4.1: Parameters used in the experiments conducted with the DE-based methods.

Parameter 0OC1-DE DE-ODT, DE-ADT
Number of generations 20 200

Fitness value Twoing rule Training accuracy
Mutation scale factor [0.3, 1.0]

Crossover rate 0.9

Population size 250 < 5n < 500

Pruning method Error-based pruning

Threshold value used to label leal fiodes 2 instances

A benchmark of 28 datasets chosen from the, UCI machine learning repository [225] is used to carry out
the experimental study. These datasets have been.selected as their attributes are numerical, categorical, or
a combination of them, also their instanegs are classified into two or more classes, and most of them are
imbalanced datasets. Table 4.2 shows the-déscription‘of/these datasets. Since oblique DTI methods seek a
linear combination of attributes to construtt hyperplanes, datasets with numerical attributes are only used for
the experimental study of both OC1-DE and DE-ODT metheds,

To obtain reliable estimates of the predictive performanee of the DE-based methods and to compare its
results with those got by other supervised learning/approaches, alrepeated stratified 10-fold cross-validation
(CV) procedure is applied in this experimental study. In a 10-fold"CV, the training set is randomly divided
no ten roughly equal disjoint folds. For each k € {1 ..... 10}, the k-th fold is retained (the test set), and
the remaining folds are used to induce a DT. Once thé DT has beén gbnstructed, the retained fold is used
to calculate its test accuracy. Finally, when all folds have been used infhe induction phase, the overall test
accuracy of the model is computed. In particular, in a stratified CV the @rtion of the different classes in
each fold must be very similar to those in the complete dataset, and in a rgqud CV several runs of the CV
process are conducted, and the average test accuracy of these runs is used asthe final estimated yield of the
model.

According to the previous paragraph, the DE-based methods are run for eachiteration of the 10-fold CV
procedure&ince the evolutionary process in the DE-based methods conducting a glebal search in the tree
space use the training accuracy of each DT as its fitness value, the DTs in the final population are overfitted
to the training set, so the DT with the best training accuracy would have a decreased tést accuracy. In this
work, with the aim of mitigating the effects of this overfitting, a subset of instances of the dataset is used
to determine an independent accuracy for each DT in the final population and to select the best one. This
value is referred in this work as the selection accuracy, so the DT with the best selection accuraey in the final
population is used to calculate the test accuracy of the fold. To implement this strategy, 20% of thelinstances
in the dfBset are used to compute the selection accuracy, and the remaining are used in the CV procédure.
Fig. 4.1 depicts this cross-validation scheme. N

The CV procedure applied to estimate the test accuracy of the classifier constructed by the DE-
methods is similar to the one propos@lby Murthy et al. [260]: For each fold, the selection accuracy (training
accuracy for the OC1-DE method) of each DT in the population is calculated, and the DT with the bést
selection accuracy is used to compute the number of test instances correctly classified. The ratio between the
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Table 4.2: Description of datasets used in the experiments.

Numerical Categorical

Dataset Instances attributes  attributes Classes Class distribution
Datasets with only numerical attributes:

glass 214 9 0 7 70(76(17|0(13|9]29
pima-diabetgs 768 8 0 2 500|268
balance-scale 625 4 0 288(49/288
heart-statlog 270 13 0 2 150[120

iris 150 4 0 3 50/50/50
australian 690 14 0 2 307|383
ionosphere 351 34 0 2 126|225

wine 178 13 0 3 59|71/48

sonar 208 60 0 2 97|111

vehicle 846 18 0 4 212|217|218|199
liver-disorder 345 6 0 2 145|200
page-blocks 5473 10 0 5 4913|329|28/88|115
blood-t 748 4 0 2 570(178
breast-tissue-6 106 9 0 6 22121|14|15|16]18
movement-libras 360 S0 0 15 24 instances per class
parkinsons 195 22 0 2 48|147

seeds 210 6 0 3 70 instances per class
segment 2310 19 0 7 330 instances per class
ecoli 336 7 0 8 143|77|52|35|20(5]2]2
spambase 4601 37 Q 2 1813|2788
Datasets with only categorical attributes:

car 1728 0 6 4 1210[384|69|65
molecular-p 106 0 57 2 53|53
tic-tac-toe 958 0 9 2 332|626
Datasets with numerical and categorical attribufes:

lymph 148 3 15 4 281|614
credit-g 1000 7 3 2 700|300

cme 1473 2 7 3 629(333[511
haberman 306 2 1 2 225|181
dermatology 366 1 33 6 112|61(72|49|52|20

correct classifications of all folds and the number of training instances is taken as.the overall test accuracy of
the classifier. Furthermore, the DT size is defined as the average number of leaf hodeS of the DTs constructed
by all folds.

In this study, the Friedman test [128]is applied to carry out a statistical analysis of the résults produced by
the DE-based methods when comparing them with those obtained by other classiﬁcatiogﬁt\ods. This non-
parametric statistical test evaluates the statistical significance of the experimental results thrgugh computing
the p-value without making any assumptions about the distribution of the analyzed daW p-value is
used to accept or to reject the null hypothesis Hy of the experiment which holds that the perw e of the
compared algorithms does not present significant differences. If the p-value does not exceed defined
significance level, Hy is rejected, and the Bergmann-Hommel (BH) post-hoc test [ 161] is conductéd tect
the differences between all existing pairs of algorithms. These statistical tests are applied using th N
R library [57]. .

The results obtained with [n DE-based methods are compared with those achieved by a group of @—
based approaches for DTI and by several supervised learning methods available on the WEKA data mining
software [149]. First, the accuracy of the DTs achieved by these methods are compared with those reported
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£ . Overall
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Figure 4.1: Adapted cross-validation procedurgéto determingthe overall test accuracy of each dataset in the experi-
mental study.

by the tollowing MH-based algorithms:

* EFTI [373]: The experimental results in this study report a, comparison of the EFTI method with
several algorithms such as OC1, OC1-SA, OCI-GA, OCI-ES, GaTree, and HDBT.

* LEGAL-Tree [19]: The experimental results in this study report«a,comparison of two LEGAL-Tree
versions: LA using the lexicographic analysis and PA using the/Pareto dominance approach. This
study also reports the results achieved by the GALE method.

These studies were selected since they apply the same sampling method that the one used in this thesis,
and also :n;e they report the better performance of the MH-based approaches for DTL

Next, the accuracy and size of the DTs got by these methods are compared Witlrthose obtained by the
following DTI methods:

* J48 [387]: Itis a Java implementation of the C4.5 algorithm.
* sCART (SimpleCART) [46]: This is a Java implementation of the CART method.

Then, the accuracy of the DTs constructed with the DE-based methods are compared withﬂﬁsq\chjeved
using the following classification methods: s\

« NB (Naive Bayes) [179]: This is a probabilistic classifier based on the Bayes theorem. (\

>
* MLP (Multilayer Perceptron) [258]: MLP is a feed-forward artificial neural network (FF—ANNQ
plying backpropagation to classify instances. The MLP has one or more hidden layers of nodes using
sigmoid functions.
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. RBFM(Radial Basis Function Neural Network) [120]: This is also an FF-ANN using a set of
Gaussian sadial basis functions (RBF) in its hidden layer.

* RF( Randomrest) [45]: It is an ensemble learning method constructing a multitude of DTs. RF uses
a voting scheme®to predict the class membership of new unclassified instances.

Finally. boheiéh‘ and' size of the induced DT with the DE-based methods implementing a global
search strategy are analf{qﬂ-tp evaluate the advantages of implementing the proposed scheme. The number
of refinements of non-opfumal leaf nodes is also assessed, due to the desire that the number of branches
inserted in the evolved DT be'feduced.

4.2 Results of the oblique decision trees induction

In this section, the results of DE-based.methods inducing oblique DT are described and compared with those
reported by other MH-based approaches that'also produce this type of DTs.

4.2.1 Comparison with other MH-basg¢d approaches for DTI

In Table 4.3 and Figure 4.2 are shown the average accuracies of the DTs induced by several MH-based
approaches for DTI as well as those achieyed by the DE:based methods inducing oblique DTs. In Table 4.3,
the best result for each dataset is highlighted with bold'numbers, and the numbers in parentheses refer to the
ranking reached by each method for each dataset. The last'row in this table indicates the average ranking of
each method. It is observed that the DE-based methods produte better results than those generated by the
other MH-based approaches for DTL In particular, the DE:ODT -method obtains the best results from this
experiments, as it yields higher average accuraciés than those get by the compared algorithms in six of the
eleven datasets.

Table 4.3: Average accuracies obtained by other MH-based approaches for DTL

Dataset oc1 0OC1-5A OC1-GA OCI1-ES HBDT GATree EFTI DE-ODT OCI1-DE
glass 62.04 (8) 64.32 (4) 6391 (5) 6252 (6) 6251 (7) 52.00 (9 70.82 (2) 68.97 (3) 7131 (1)
diabetes 73.03 (7) 7435 (3) TL4T (9) T428 (4) TLS51 (8) T3S (37494 (2) 7579 (1) 7337 (6)
balance-scale TI.58 (9) 73779 (5) 73.31 (6) 7298 (7) 72.10 (%) 74.54 (HpR7.85 (3) 9197 (2) 9392 (1)
heart-statlog 7630 (5) 7496 (7) 68.67 (9) T76.00 (6) 7985 (3) 79.70 (4) 8128 (1) B1.I1 (2) 7411 (%)
iris 95.60 (4.5) 93.47 (9) 94.93 (6) 94.40 (7) 95.60(4.5) 96.27 (3) O4L135(8) 9717 (1) 96.73 (2)
australian 83.63 (7T) 85.02 (4) 76.49 (9 84.81 (5) 82.52 () 85.13 (3) 845146 85.61 (1) 85.20 (2)
ionosphere 88.26 (5.5) 89.29 (4) 90.10 (3) 88.26(5.5) 88.24 (7) 8486 (9) E6.39%(8)y 9228 (1) 91.11 (2)
sonar 70.39 (8) 7251 (6) 73.13 (5) 70.50 (7) 75.96 (3) 52.20 (9) 74.64 (4) 79.34 (1) 77.65 (2)
vehicle 68.16 (6) 68.06 (7) 6630 (8) 69.18 (4) 7451 (1) 60.76 (9) 68.75 (5) A1.337(3) 7232 (2)
liver-disorders 67.23 (5) 6460 (8) 67.24 (4) 66.18 (6) 6596 (7T) 6271 (9) 7036 (2) TLI6™N1) 67.63 (3)
page-blocks 97.05 (3) 97.00(4.5)96.61 (7) 97.08 (1) 97.00(4.5) 92.34 (9) 93.16 (8) 9T0TA2)»96.88 (6)
Average ranking 6.18 5.59 6.45 5.32 5.55 6.64 4.45 1.64 318

]

A statistical test of the experimental results is conducted to evaluate the performance of the DE-based
memocn First, the Friedman test is run, and its resulting statistic value is 32.128 for nine methf\nd
eleven datasets, which has a p-value of 8.837 x 10~°. When evaluating this p-value with a significanc Q
of 5%, Hy is rejected. Next, the BH post-hoc test is applied to find all the possible hypotheses which canmot
be rejected. In Table 4.4 is shown both the average rank (AR) of the results yielded by each method afd
the p-values computed by comparing the average accuracies achieved by the DE-based procedures versus
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Figure 4.2: Graphical comparison of the average acéuracies obtained by other MH-based approaches for DTL

those obtained by the other MH-based dpproaches.” The p-values highlighted with bold numbers indicate
that Hy is rejected for this pair of methods since-they show different performance. Unadjusted p-values are
calculated with the average ranks of the two,methods being compared, as is described by Demsar in [85].
These values are used by the BH post-hoc test to computegthe corresponding adjusted p-values. Table 4.4
shows that the DE-ODT method has a better perfermance than the other MH-based approaches since it has
the lowest average rank (1.64) and its results are statistically ditfetent from six of the seven methods.

Table 4.4: p-values for multiple comparisons among othe
MH-based approches for DTI and the DE-based methods.

Method AR 0OC1-DE DE-ODT
Unadjusted BH Unadjusted BH

0Cl1 6.10 1.0197e-02 1.6316e-01 9.9218e-05 2.1828e-03
OCI-5A 5.55 39110e-02 6.2576e-01 7.0797e-04 1.5575e-02
OCI-GA 645 5.0693e-03 1.0645e-01 3.6904e-05 1.0333e-03
OCI-ES  5.27 6.7328e-02 1.0000e+00 1.6164¢-03 3.5562e-02
HBDT 545 4.2960e-02 6.8736e-01 §.1530e-04 1.017%e-02
GATree  6.37 3.0934e-03 8.6616e-02 1.8543e-05 6.6756e-04
EFTI 445 2.7575e-01 1.0000e+00 1.5806e-02 2.8452¢-01
DE-OC1 1.64 - - 1.8568e-01 1.0000e+00
DE-ODT 3.18 1.8568e.01 1.0000e+00 - -

Figure 4.3: p-values graph of the MH-based approaches
for DTI and the DE-based methods. )

3
Figure 4.3 gows a graph where the nodes represent the compared methods and the edges jo WO
nodes indicate that the performance of these methods does not present significant differences. The'values
shown in the edges are the p-values computed by the BH post-hoc test. This figure is based on that obtdined
using the scmamp library, and in it is observed that the DE-based methods are not statistically different
between them and that the DE-ODT method is statistically different with the other MH-based approaches.
These statistical results indicate that the DE-ODT method is the better DTI method to build oblique DTs.
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1
422 Comparison with DTI methods

In Table 4.5 El.l’d Figure 4.4 are shown the average accuracies of the DTs induced by the DTI algorithms as
well as those achiéVed by the DE-based methods to induce oblique DTs. In this Table is observed that the
DE-based methods preduce better results than those generated by the other DTI algorithms, and also that the
DE-ODT method inducés,oblique DTs with better accuracy than the trees built by the other DTI algorithms
in twelve of the twenty-datasets.

Table 4.5: Average accuracies obtained by the DTI algorithms and the DE-based methods.

Dataset J48 sCART OC1-DE DE-ODT
olass 67.62 (4 7126 (2) 7131 (1) 68.97 (3)
diabetes 7449 (3) 7456 (2) 7337 4 7579 (1)
balance-scale T77.82 (4) 7874 (3) 9392 (1) 9197 (2)
heart-statlog 78.15 (2) 78.07 (3) 7411 4) 8111 (1)
iris 94.73 (3) 9420 (4) 9673 (2) 9717 (1)
australian 24,35 (4) B85.19 (2.5) 85.19 (2.5) 85.61 (1)
ionosphere 89740 (3) 88.86 (4) 9L.11 (2) 92.28 (1)
wine 93.20 _(1) 89.49 (4) 9258 (2) 91.88 (3)
sonar 7361 @) 70,67 (4) 7765 (2) T934 (1)
vehicle TL28™%2) Ne9.91 (4) 7232 (1) 7133 (3)
liver-disorders 6883 (&) 66.64 (3) 67.63 (2) 7116 (1)
page-blocks 96.99 (2) 96.J6s (4) 9688 (3) 97.07 (1)
blood-t TR20 (2) TRE6 (3) 7635 4 7870 (1)
breast-tissue-6 34.81(3) 32445 44) 3491 (2) 3885 (1)
movement-libras 6931%(2) 65.64 (3» 7511 (1) 5563 (4)
parkinsons 84.72.4).. 86.317(3) 8795 (1) 8643 (2)
seeds 90.90 (3.5) 90.90 (3.5)9376 (1) 91.79 (2)
segment 96.79 (I 9583 (3y_9593 (2) 9478 4
ecoli 82.83 (4) [ 8315 (3) 8351 (2) 8472 (1)
spambase 92.68 (2) 9235, (3) 9249 (4 9394 (1)
Average ranking 2.825 3.250 2175 1.750

1

%rst, the Friedman test is run, and its resulting statistic value is 27.661 ﬂr_four methods and 20 datasets,
which has a p-value of 4.24 x 10~>. Hj is then rejected, and the BH post=hbc test ianplied. Table 4.6
shows the results of these tests, and Figure 4.5 shows the graph corresponding to these p-values. Table 4.6
shows that the DE-ODT method has a better performance than the other DTI mﬂﬂ#sincﬂ has the lowest
average rank (1.750) and its results are statistically different from these methods,«Fhese statistical results
indicate that the DE-ODT method is the better DTI method to build oblique DT.

On the other hand, the average sizes of the DTs constructed by the DE-based algqi&[ramd also of
those induced by the J48 and the SCART methods are shown in Table 4.7 and in Figufe 4.6, These results
indicate that the DE-ODT method produces the most compact DTs. Also, it is observed thauthessize of the
DTs built for the OC1-DE method has less complexity than those yielded by the J48 method:

4.2.3 Comparison with other classification methods \

In Table 4.8 and Figure 4.7 are shown the average accuracies got by several classification methods as wellas
those obtained by the DE-based methods. In this Table can be observed that the RF algorithm and the*
method construct more accurate classifiers than the others, and also that the DE-based procedures i e
DTs with better accuracy than the models built by both the RBF-NN algorithm and the NB method.

The Friedman statistics computed by analyzing the results got by these six methods with 20 datasets is
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. arkinsons
movement-libras 1

breast-tissue-6 93 segment

blood-t ecoll
page-blocks spambase
. . ——J48
liver-disorders glass —+ SimpleCART
- 0OC1-DE
-e~DE-ODT
vehicle diabetes
sonar A balance-scale

wine heart-statlog
1onosphere \ 1118
australian
Figure 4.4: Graphical comparison of the averag€accuraeies Obtained by the DTI algorithms and the DE-based meth-

ods.

Table 4.6: p-values for multiple comparisons amoeng DTI
algorithms and the DE-based methods.

Method AR OC1-DE DE-ODT D §95?10c‘|-DE PIIIJ+ 148 P 59ﬁj‘l SCART
. . 1.7 . 2.175 : 2.825 ; 325
Unadjusted BH Unadjusted BH

2.825 1.1134e-01 1.1134e-01 8.4584e-03 2.5375e-02
sCART  3.250 8.4584e-03 2.5375e-02 2.3856¢-04 1.4131e-03

OC1-DE 2.175 H i 2.9786e-01 5.9572e-01 Figure 4.5: p-values graph of the DTI algorithms and the
DE-ODT 1.750 2.9786e-01 5.9572e-01 - - DE-based methods.

-

27.661, and the corresponding p-value is 4.24 x 107> so that Hy is rejected. H post-hoc test is then

applied to find all possible hypotheses that can not be refused. Table 4.9 shows sults of these tests, and
Piga: 4.8 shows the graph corresponding to these p-values.

The p-values obtained by the BH post-hoc test point out that the RF method is statistically different only
with the RBF-NN algorithm and the NB method, and that both the MLP method and thmDT procedure
are statistically different with the NB method. The comparison between the remaining pairs,of algorithms
indicates that they have a similar performance. The RF method is the best ranked in this co\-ﬂaﬁm, and the
AR of the DE-ODT procedure places it as the third best classification method.

)

4.3 Results of the DE-ADT method s\

In this section, the results of the DE—AD'nw variants are described and compared with those got by‘@
classification methods. Two DE-ADTgpy variants are evaluated in this experimental study:

« DE-ADTE,y: This is the first variant of the method which returns the DT with the best selection
accuracy in the population, without to apply the refinement of the non-optimal leat nodes.
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g Table 4.7: Average DT sizes obtained by the DTI methods.
al

taset J48 sCART 0OC1-DE DE-ODT
glass 23.58 4 8.00 (1) 2161 (3) 11.08 (2)
diabetes 2220 (3) 300 (1) 4155 4 1497 (D)
balance-scale 41.60 (4) 13.00 (2) 1524 (3) 501 (1)
Heart-statlog 17.82 (4) 16.00 (2) 1743 (3) 7.23 (1)
ils_ 4.64 (3) 500 (4) 300 (1) 337 2)
atiStralian 2575 () 500 (1) 2190 (3) 1564 (2)
ion@sphere 13.87 4y 3.00 (1) 7.20 (2) 773 (3
wine 5.30 (3) 5.00 (2) 548 4 471 (D
sonar 14.45 (4) 10,00 (2) 1024 (3) 613 (1)
vehicle 69.50 (3) 80.00 (4) 5674 (2) 4425 (1)
liver-disorders 2551 4 300 (1) 2265 (3) 6.60 (2)
page-blocks 4291 (4 22,00 (1) 3870 (3) 2456 (2)
blood-t 6.50 (1) 10,00 (3) 2239 (4 846 (2)
breast-tissue-6 2245 (4 800 (1) 1409 (3) 897 (2)
movement-libras 47.52 (4 30,00 (3) 2746 (1) 29.07 (2)
parkinsons 024, (4) 7.00 (2) 7.1 (3) 4385 (1)
seeds 742 4 600 (3) 498 (2) 317 (1)
segment 41.214) 4100 (3) 3053 (2) 2791 (1)
ecoli 18.59%(4) " 15.00 (3) 12.57 (2) 7.06 (1)
spambase 103,37 (4) 7500 (3) 7442 (2) 3170 (1)
Average ranking 3.65 2.15 2.65 1.55
movement-libras padu.rwons seeds
breast-tissue-6 1 p segment
blood-t i :An__l " A ecoli
AN ) :
| '
c , | ks " 3
page-blocks . y I : ,aae"
—=J48
liver-disorders glass —+— SimpleCART

—=OC1-DE
—»-DE-ODT

=
vehiele™

diabetes
v
sonar balance-scale
wine heart-statlog
ionosphere iris

australian

Figure 4.6: Average DT sizes of several DTI methods.

)
. DE—ADTEPV: This variant returns the refined version of the DT with the best selection accur: in the
population. (_

4.3.1 Comparison with other MH-based approaches for DTI

In Table 4.10 is shown the average accuracies of the DTs induced by several MH-based approaches for DTI
as well as those achieved by the [S{PV method. It is observed that the DE-based method produce better results
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Table 4.8: Average accuracies obtained by several classification methods.

Dataset NB MLP RBF-NN RF OC1-DE DE-ODT
glass 49.44 (6) 6729 (4 6509 (5) 7995 (1) 7131 (2) 6897 (3)
diabetes 75.76 (3) 7475 4y 7404 (5) 7618 (1) 7337 (6) 7579 (2)
balance-sedle 90.53 (4) 9069 (3) 8634 (5) 8LTI (6) 9392 (1) 9197 (2)
heart-statlog 83.59 (1) 7941 (5) 8311 (2) 8241 (3) 7411 (6) SBLIL (4
iris 95.53 (5) 9693 (2) 9600 (4) 9473 (6) 9673 (3) 9717 (1)
e»'lmlian 77.19 (6) 8342 (4) 8255 (5) 8677 (1) 8519 (3) 8561 (2)
wonosphere 82.17 (6) 91.05 (5) 9171 (3) 9339 (1) 9L1l 4 9228 (2)
wine 9M47 (4) 98.03(L.5) 9770 (3) 98.03(1.5) 92.58 (5) 91.88 (6)
sonar 6769 (6) 8159 (2) 7260 (5) 8447 (1) 7765 (4) 79.34 (3)
vehicle 44068).46) BLI1 (1) 6535 (5) 75.14 (2) 7232 (3) 7133 (4)
liver-disorders 5487 (6) 6872 (3) 6504 (5) 7299 (1) 67.63 (4 7TL16 (2)
e-blocks 90.01 (6Y 9628 (4) 9491 (5) 97.54 (1) 9688 (3) 97.07 (2)
blood-t 75.087(5)” 7846 (2) 7822 (3) 7362 (6) 7635 (4) 7870 (1)
si-lissue-6 46.42 (M:fﬂ' (3) 4113 (3) 4519 (2) 3491 (6) 3885 (4
movement-libras 64.14 (5) 8050 (2) 7550 (3) 8289 (1) 7511 (4) 5563 (6)
parkinsons 70.10 (6) '9FA44. (1) 81.49 (5) 9138 (2) 8795 (3) 8643 (4)
seeds 90.52 (6} 9524 (1) 91.67 (5) 9357 (3) 9376 (2) 9179 (4
segment 80.17 (6) 9621 W2y 8731 (5) 98.07 (1) 9593 (3) 9478 (4
ecoli 85.51 (2) 84.85%(3) W 8330 (6) 8625 (1) 8351 (5) 8472 (4)
spambase 79.56 (6) 9L19 (4) BL3L (5) 9565 (1) 9219 (3) 9394 (2)
Average ranking 4.800 2.925 4350 2,125 3.700 3.100
movement-libras pa:klﬁn‘ms sgetds
breast-tissue-6 . segment
S
blood-t \ |‘|| ecoli
page-blocks R . spambase
g B
' —NB
-s~RB-NN
liver-disorders el MLP
—aRF
= OCI-DE
-s-DE-ODT
vehicle diabetes

Figure 4.7: Graphical comparison of the average accuracies obtained by several classification methods.

thal%lose generated by the other MH-based approaches for DTI in six of the eight datasets.

SOnar

ionosphere

australian

iris

balance-scale

heart-statlog

e Friedman statistics computed by analyzing the results got by these four methods is 14.36,/and the

corresponding p-value is 2.454 x 10~2 so that Hy is rejected. Table 4.11 shows the adjusted p-values'o
by the post-hoc test, and the graph corresponding to these values is depicted in and Fig. 4.9. In this t
4.13 is shown that the DE—ADT%PV method has a better performance than the other MH-based approaches

ined

induce axis-parallel DTs since it has the lowest average rank (1.25) and its results are statistically ditferent

from the others.
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Table 4.9: p-¥alues for multiple comparisons among sev-
eral classification me 5.

Method AR OC1-DE DE-ODT
Unadjusted BH  Unadjusted BH
NB 4.800 6.2979028.7787e-01 4.0591e-03 2.8414e-02

MLP 2.925 1.9019e-01 W‘?‘}e—ﬂl 7.6737e-01 8.9374e-01
RBF-NN 4.350 2.7118e-01+7.767%¢-01 3.4610e-03 1.3844e-01
RF 2.125 7.7623e-03 5.4336¢-03 0.9342e-02 3.9736e-01
OCI-DE 3.700 - - 3.1049e-01 7.6079e-01
DE-ODT 3.100 3.1049-01 7.607%-01, - -

DE-ODT
1

03973 uhs

00384

MLP

2925 00960

07607

—
| 2123 |°‘5'Eui

2607
oaz0s 07607

0.7607
~

NE
—— 03778 - 4.8

Figure 4.8: p-values graph of the classifiction methods.

Z

Table 4.10: Average accuracies.obtained by other MH-based approaches for DTI and the DE-ADT?PV method.

Dataset LEGAL Tree;y LEGAL-Treepy ~ GALE  DE-ADTE,,
glass 67.00+ (3) 70.00 (2) 59.00 4 T7L67T (1)
diabetes 75.00_(3) 76.00 (1) 7400 (4) 7548 (2)
balance-scale 77.00 (3.5) 77.00 (3.5) 78.00 (2) 80,00 (1)
heart-statlog TO.00° _A2) 78.00 (3.5) 78.00 (3.5) 8292 (1)
iris 95.00 (2.5 95.00 (2.5) 94.00 (4) 9725 (1)
ionosphere 9L.00 (2 90.00  (3) 89.00 (4) 9288 (1)
lymph 80.00 _ (1) 77.00 (3.5) 77.00 (3.5) 7883 (2)
credit-g 72,000 (2) 71.00 (3.5) 7100 (3.5)  73.65 (1)
Average ranking 2825 3.250 2.175 1.750
Table 4.11: p-values for multiple comparisons”among :
other MH-based approaches for DTI and the DE-ADTR;,, l.r.(;:l;’re;p,\
method.
- 04979 02452
DE-ADT,
SPV 4 E T
Method AR Unadjusted - Dﬂ]?; 0.1974 lEGAEI.u}:roC.,\ 0.1974 (-3;_\;615
LEGAL-Treep 5, 238  8.136le-02 1.9745e-01
LEGAL-Treepa 281 1.5494e-02 4.6482¢-02 Figure 4.9: povalues graph of multiple comparisons
GALE 3.56  3.4030e-04 2.0418e-03 among other MH-based approaches for DTI and the DE-
DE-ADTE, 1.25 - - ADTE,,, method.

4.3.2 Comparison with DTI methods

In Table 4.12 and Fig. 4.10 are shown the average aﬁmcies of the DTs induce@ by the DTI methods as
well as those achieved by the DE-ADTgpy variants. It is observed that the DE-ADTgpy Wariants produce
better results than those generated by the other DTI methods. In particular, the DE-ADTgpy; variant obtains

the best results from this experiment, as it yields higher average accuracies than those g

DTI techniques in 16 datasets.

he compared

The Friedman statistics computed by analyzing the results got by these five methods 2202, and the
corresponding p-value is 6.461 x 107> so that Hy is rejected. The BH post-hoc test is then ap@ to find
all possible hypotheses which cannot be rejected. Table 4.13 shows this values, and the graph cn'res onding
to these p-values is depicted in and Fig. 4.11. In Table 4.13 is shown that the DE—ADT&F,V metho a
better performance than the other DTI methods since it has the lowest average rank (1.35) and its results

stat@fically different from the others.

On the other hand, the average sizes of the DTs constructed by the DE-ADTgpy variants and also of
those induced by J48 and sCART methods are shown in Table 4.14 and Fig. 4.12. These results indicate
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Table 4.12: Average accuracies obtained by the DTT algorithms and the DE-ADT variants.

auasen J48 SCART DE-ADTE,, DE-ADTE,,
car 9222 (2) 9737 (1) 81.19 4) 9053 (3)
molecular-p 79.06 (3) 47.17 (4) 80.12 (2) 8488 (1)
te-tac-toe 8528 (2) 9357 (1) 7549 (4) 8446 (3)

s 6762 (4 7126 (2) 67.82 (3) TL6T (1)
diabetet 7449 (4) 7456 (3) 7473 (2) 7548 (1)
balange-scale 77.82 (3) 7874 (2) 7570 (4 80.00 (1)
heart staflog 78.15 (3) 78.07 (4) 8181 (2) 8292 (1)
iris 9473 (3) 9420 (4) 9592 (2) 9725 (1)
australian 84.35 (4) 85.19 (3) 8557 (2) 8642 (1)
ionosphere 89.74 (3) B88.86 (4) 8§9.97 (2) 9288 (1)
wine 9320 (3) 89.49 (4) 9347 (2) 9437 (1)
B onar 7361 (3) T0.67 (4) 7419 (2) 7874 (1)
vehicle 7228 (1) 6991 (3) 6549 (4) 7221 (2)

r-disorders 65.83 (4) 66.64 (3) 6696 (2) 7033 (1)
page-blocks 9699 (1) 9676 (2) 9510 (4) 9674 (3)
lymph 7581 4(4) 77.16 (2) 7650 (3) 7883 (1)
credit-g 7185 (4) 7343 (2) 7163 (3) 73.65 (1)
cme 51.44(04)) 5521 (2) 5418 (3) 5557 (1)
haberman 72.16 4) 324 (3) 7429 (2) 7576 (1)
dermatology 94a10 (3) 9443 (2) 9281 (4) 9570 (1)
Average ranking 31 2.75 2.8 1.35

page-blocks {ym&{; creditg

liver-disorders cmic

LI L
vehicle * _shaberman

5

sonar " deérmatology
\ Dy
wine \ car, --DE-ADT 5pv
ionosphere molecular-p
australian tic-tac-toe
iris glass
heart-statlo, diabetes
& balance-scale

Figure 4.10: Graphical comparison of the average accuracies obtained by the DTI algorithms and the¢ DE-ADT vari-
ants.

)
gﬂt the sCART method produces the most compact DTs but to the detriment of their accuracies. Mm is
observed that the size of thn)Ts built for the DE-ADTspy variants has less complexity than those yi
by the J48 method. As the DE-ADTX,,,, variant applies a recursive partition strategy to refine the bes
generated by the evolutionary process, the average sizes of its constructed DTs are similar to those induced
by the J48 method, although they are always smaller than the latter.
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. . . DE-ADTS
Table 4.13:" p-vilues for multiple comparisons among the 28 s
DTI algorithms and the DE-ADT variants. T~
Method AR DE-ADTE,, DE-ADTE,, DE-ADTE, y T
ed BH Unadjusted BH 1.35 [ ~ J}Af.

7 | T
148 3.10 4.6243e: LO000e+00 1.8143e-05 1.0885¢-04 fe
sCART 2.75 9.025 1 _1L.0000e+00 6.0517e-04 1.2103e-03 9‘;-’;?"'
DE—ADTBW 2.80 - - 3.8266e-04 1.1480e-03 .
DE-ADTg,, 1.35 3.8266e-04(1.1480e-03 - - Figure 4.11: p-values graph of the DTI algorithms

and the DE-ADT variants.

Table 4.14: Average DT sizes obtained by the DTI algorithms and the DE-ADT variants.

Dataset J48 SCART DE-ADTE,, DE-ADTS,,
car 122,05 (4) 58.00 (2) 1557 (1) 10533 (3)

lecular-p 1690 (4) 100 (1) 1129 (2) 1162 (3)
tic-tac-toe 8804 (4) 3100 (2) 2712 (1) 79.80 (3)
glass 2358.4(4) 8.00 (1) 888 (2) 1593 (3)
diabetes 2220 (4) 300 (1) 671 (2) 1855 (3)
balance-scale 41600 (4)) 13.00 (2) 10.04 (1) 1843 (3)
heart-statlog 17.82 f4) M6.00 (3) 960 (1) 977 (2)
iris 464 (3, 500 (4 410 () 435 ()
australian 2575 (4)  5.00.(1) 747 (2) 1354 (3)
ionosphere 1387 (3) “300° (1) 786 (3) 779 (2)
wine 5304 500 () 539 (4 525 (2)
sonar 14.45%4) 10,000 (s 1034 (2) 1040 (3)
vehicle 69.50 w(3)e 80.00 (4)711.50 (1) 61.84 (2)
liver-disorders 2551 (&) L300 (1) 958 (2) 1429 (3)
page-blocks 4291 (4y 2200 (2)7__8.04 (1) 4045 (3)
lymph 17.30 (4) ( 9.00 (1) 1301 (2) _14 3)
credit-g 90.18 (4) “FO0N(1) 3567 (2) 5557 (3)
cme 14975 (4) 1800° (2) 15647 ([) 3887 (3
haberman 1532 (4) 300 (1) 10.16%¢3) 0 909 (2)
dermatology 27.06 (4)  9.00 (1) 19.14 (2) 2407 (3)
Average ranking 3.85 1.65 LE§ 2.7

1
4.3.3 Comparison with other classification methods

In Table 4.15 and Fig. 4.13 are shown the average accuracies got by several classification methods as well
as those obtained by the DE—ADTgPv method. In this Table can be observed that the RF Algorithm and the
MLP method construct more accurate classifiers than the others, and also that the DE-ADTg,, induces DTs
with better accuracy than the models built by both the RBF-NN algorithm and the NB meghod.

The Friedman statistics computed by analyzing the results got by these five methods with. 20 datasets is
10.4, and the corresponding p-value is 0.034222 so that Hy is rejected. Tablelﬁ shows the results of the
post-hoc test, and Fig. 4.14 shows the graph corresponding to these p-values. The p-values obtained by the
BH post-hoc test point out that the RE method is statistically different only with the RBE-NN algori and
the NB method, and the comparison between the remaining pairs of algorithms indicates that the gbe a
similar performance. The RF method is the best ranked in this comparison, and the AR of the DE-A Tg‘w
variant places it as the third best classification method.
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page-blocks 1}“}%1 credit-g
liver-disorders 100
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Figure 4.12: Average DT sizes of Several DTI algorithms and the DE-ADT variants.

Table 4.15: Average accuracies obtained-by severalelassification algorithms and the DE-ADT variants.

Dataset NB MLP RBF-NN RF DE-ADTE,.
car 8546 (5) \9941 (1) _8880, (4 9463 (2) 9053 (3)
molecular-p 90.19 (3) 9170~ (1) 8953 (4 9113 (2) 8488 (5)
tic-tac-toe 69.65 (5) 97.39.7°(1) 7088 N@ 9693 (2) 8446 (3)
glass 4944 (5) 6729 #13)  65.00 (4) 7995 (1) 7167 (2)
diabetes 7576 2y 7475 (4. T4.0447(5) 7618 (1) 7548 (3)
balance-scale 9053 (2) 9069 (1) /8634 43)_..81.71 (4) 8000 (5)
heart-statlog 8359 (1) 7941 (577 8311 (2) 8241 (4) 8292 (3)
iris 9553 (4) 9693 (2) 9600 (3) 9473 (5) 9725 ()
stralian 7719 (5) 8342 (3) 8255 (4) 8697 (1) 8642 (2)
ionosphere 8217 (5) 9105 (4 9L7L (3) 9339 (1) 9288 (2)
wine 9747 (4 98.03 (15 9770 (3) 98.03~1%) a.ST (5)
sonar 67.60 (5) 8159 (2) 7260 (4 84470 (1) 7874 (3)
vehicle 4468 (5) S8LI1 (1) 6535 (4 7514 (27221 (3)
r-disorders 5487 (5) 6872 (3) 6504 (4 7299 (1)./7033 (2
ge-blocks 9001 (5) 9628 (3) 9491 (4 9754 (1) #9674 (2)
ph 8311 (3) 8324 (2) 7966 (4) 8392 (1) . T8R3 _(5)
credit-g 75.16 (2) 7158 (5) 7358 (4 7627 (1) 73.65 3)
cme 5048 (4 5153 (2) 5019 (5) 5063 (3) 5557 (D)
haberman 7536 (2) 7029 (4) 7314 (3) 6817 (5) 7576 (I
dermatology 9740 (1) 9645 (4) 9658 (3) 9686 (2) 9570 (5
Average ranking 3.65 2,625 3.7 2.075 293
)
3.4 Predefined height and refinement rate s\

For evaluating the relevance of using the dataset information to define the size of individuals evol

the DE-ADTgpy method, both the average heights of the constructed DTs and the number of refine s
applied to the best DT in the last population of the evolutionary process are analyzed. Table 4.17 and
Fig. 4.15 show the average heights produced by the DE-ADTspy variants, and also the predefined height
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Figure 4.13: Graphical comparison of the average accuracies obtained by several classification algorithms and the

DE-ADT variants.

Table 4.16: p-values for multiple comparisong@mong sev- DE-ADT,,, 0.5345 RBF-NN
. - 53
eral classification algorithms and the DE-ADT vatimits. 032 o L2 37
DE-ADTE,y - [ osas oisn” |
Method AR Unadjusted  BH 10 T 10
/ ~—— [
NB 3.650 1.6151e-01 5.3445e-01 =~ [ )
MLP 2625 5.1563e-01 1.0000e+00 o RS 01593 NB
RBE-NN 3700 1.336le01 5.3445e-01 2625 o 365
RF N 2075 8.0118¢-02 3.2047e-01 Figure 4.14: p-values graph of the classifiction algorithms
DE-ADTgpy 2.950 - - and the DE-ADT+ariants.

compl.ni before to apply the evolutionary process. In this Table is also shown the refinements percentages
of the DTs constructed by the DE—ADTEw variant, where the number of refinements represents the non-
optimal leaf nodes of the best DT in the final population of the DE algorithmi, These nodes are replaced
with several sub-trees. In Table 4.17 is observed that the average heights of the PTs constructed are less
than the predefined height in six datasets, and they surpass it in two or more levels in nine datasets. Two
characteristics persist in the datasets with deep DTs: they have more than 600 training inStances and more
than two class labels. When the refinement percentage is analyzed, it is observed that thisvalue is higher
than 25% for these datasets.

4.4 Final remarks

In light of the experimental results, it can P& affirmed that the DE-based approaches for DTI are fent
induction procedures since they construct DTs with high accuracy and a smaller number of leaf nodes,
The refinement applied in the best DT in the final population permits to improve the training accuracy=6f
the model. Notwithstanding the results yielded by these DE-based approaches are not better than thoSe
produced by the RF algorithm and the MLP-based classifier, they are statistically equivalent. An advantage

95




Differential-Evolution-based methods for inducing Decision Trees

and although the RF method also builds DTs, its voting scheme makes it very difficult to trace

Table 4.17: Average DT heights of the DE-ADT variants.

Dataset DT height Leaf nodes Refinement
Predefined Basic Refined Best DT Refined DT Number %
car 4 4.00  6.00 15.92 105.33 12.92 81.16
moleeularsp 7 350 357 11.26 11.62 0.35 311
lic-tac-toé 5 500  6.84 25.30 79.80 15.48 61.19
glass 5 545 7173 9.10 15.93 3.14 34.51
diabetes 5 525 961 6.44 18.55 2.11 32.76
balance-scalé 4 500 6.74 10.11 18.43 7.24 71.61
heart-statlog 5 568 5.70 9.03 9.7 0.86 9.52
iris 4 399 4.01 4.35 4.35 0.00 0.00
australian 3 595 749 7.03 13.54 2.27 32.29
ionosphere 7 6.16 6.76 6.00 7.79 1.55 25.83
wine 5 4.02  4.09 5.18 5.25 0.11 2.12
sonar 7 583 6.5 7.87 10.40 2.41 30.62
vehicle [ 6.02  20.04 10.40 61.84 7.42 71.35
liver-disorders 4 499 7.25 7.68 14.29 2.28 29.69
page-blocks 5 525, 13.08 7.83 40.45 6.85 87.48
lymph 6 489 © 4.89 1291 13.14 0.96 7.44
credit-g 6 498 % 7.24 34.41 55.57 7.85 2281
cmce 5 5.35% "6.50 14.96 38.87 2.80 18.72
haberman 3 3.36 33.50 8.85 9.09 0.46 5.20
dermatology 7 6.00 7.15 18.46 24.07 3.69 19.99
page-blocks Iymph crgflit-g
liver-disorders g 1" efuc

haberman

sonar

! “dermatology

e DE-ADTEpy

wine G 4 o DE-ADTSy
S Estimated height
ionosphere molecular-p
australian tic-tac-toe

s glass

heart-statlo diabetes
’ e balance-scale :

Figure 4.15: Average DT heights of DE-ADTgpy variants.
of the DE',—ADT%F,V variant is that it constructs models whose decisions and operations are easily‘l[(ﬁﬂtood,
in

which the model takes its decisions. DE algorithm is an effective approach for constructing axis—paral&] 5

when a rule to map a DT from a real-valued chromosome is implemented. An advantage of this appro: h
that the DE operators can be applied without any modification, and the chromosomes in population represent
only feasible DTs.

In this thesis, an analysis of the run-time of the algorithms is not performed, since it is known that
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=
MHs con%mre computational time than other approaches because they work with a group of candidate
solutions, u e traditional methods where only one DT is induced from the training set. It is important
to mention any practical applications, the construction of the model is conducted in one offline
procedure, so th of its construction is not a parameter that usually impacts the efficiency of the built

model.

A
O
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Conclusions and future works

N this thesis, three differential-evolution-based approaches to induce oblique and axis-parallel decision
Itrees are described. This work was motivated by the fact that metaheuristics have shown to be a practical
approach to induce more compact-and precise decision trees than traditional techniques. Since metaheuris-
tics perform an intelligent search in the«ree space, they can better discover the relationships between the
attributes describing a dataset, and they camalso avoid the inherent problems of a constructive approach such
as the traditional tree-induction procedure. ,The differential evolution algorithm was chosen in this work
since it has proved to be an efficient algorithnyto solve continuous optimization problems, and also because
its use to induce decision trees 1s scarce.

In this thesis, the decision trees are represented as sequences of values, unlike other approaches such
as genetic programming and coevolutiomarysalgorithms} in which the individuals are encoded with tree-
like structures. This linear encoding schete _allows applying the differential evolution algorithm without
any modification, with the aim to exploit its‘exploration and exploitation skills. On the other hand, if a
tree-like structure is used, several operators ensuting the generation of feasible trees must be implemented.
Furthermore, it is known that some operators havesa destructiVe\éffect on the induction process when they
are used with this hierarchical representation.

Unlike other metaheuristic-based approaches in*which the candidate solution are encoded with a fixed-
size representation, the differential-evolution-based methods propesed in this thesis define the size of the
individual according to the characteristics of the dataset'whose model is/built. This procedure is a contribu-
tion of this work since it can be used in any metaheuristic applied to induge decision trees, even for those
such as genetic programming and coevolutionary algorithms.

This thesis defines a mapping scheme to obtain feasible trees of a sequence of values is introduced,
associating each element of the sequence to the internal nodes of the tree and also uses the training set to
add leaf nodes to it. In the case of building axis-parallel DT, this scheme applies.the smallest-position-value
rule to determine the order of evaluation of the attributes in the dataset, as well as implements three rules to
avoid the inclusion of redundant nodes in the tree. This procedure is another contribation of the thesis which
can be applied to any metaheuristic using individuals as sequences of values.

Furthermore, once the evolutionary process is ended, the best tree of the population issefined by substi-
tuting non-optimal leaf nodes by sub-trees, trying to increase the accuracy of the model. This refinement can
also be considered a contribution to the present work.

Finally, the use of the algorithm of differential evolution to induce axis-parallel DTs introdueed in this
thesis is the first algorithm of this type, since there is no evidence in the existing literature of, a similar
approach. -

As a result of the statistical tests carried out on the experimental results achieved in this thesis ‘ean-be
observed that the OC1-DE method does not be better induction algorithm to the other methods and that.the
EFTI method and the LEGAL-Treey 4 algorithm are statistically equivalent to the DE-ODT method, the DE-
ADT algorithm, respectively. Both DE-based methods implementing a global search do not be statistically
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equivalent t6 the*J48 and the CART method, but they are statistically equivalent to the other classification

methods. The following table shows the values of statistical significance are obtained:

Method 0OC1-DE DE-ODT DE-ADTgpy
Metaheuristics-based approaches for decision tree induction:

acl 1.6316e-01 2.1828e-03 -
0C1-5A 6.2576e-01 1.5575e-02 -
OCI-G& 1.0645¢e-01 1.0333e-03 -
0C1-ES 1.0000e+00 3.5562e-02 -
HBDT 6.8736e-01 1.0179e-02 -
GATree 8.6616e-02 6.6756e-04 -
EFTI 1.0000e+00 2.8452e-01 -
DE-OC1 - 1.0000e+00 -
DE-ODT 1.0000e+00 -

LEGAL-Treep - - 1.9745e-01
LEGAL-Treeps, < - 4.6482e-02
GALE - - 2.0418e-03
Decision tree induction methiods.?

148 1.1134e401 2.5375e-02 1.0885e-04
SCART 2.5375e-02 1.4131e-03 1.2103e-03
0OC1-DE - 5.9572e-01

DE-ODT 5.9572e-01 -

Other classification methods:

NB 3.778Ten 2:8414e-02 5.3445e-01
MLP 7.6079¢01 8.9374e-01 1.0000e+00
RBF-NN 7.7679%=01 1.3844e-01 5.3445e-01
RF 5.4336e03 3.9736601 3.2047e-01
0C1-DE - 7.6079e<01 -
DE-ODT 7.6079-01 - -

The differential-evolution-based approaches to build decision trees generate more precise and compact
classifiers as compare to other decision tree induction methods with a statistical significance level not greater

than 0.05.

After results of all experiments and statistical analysis, we conclude that©ur hypothesis: “The differential-

evolution-based approaches to build decision trees generate more precise and compact classifiers as compare
to other decision tree induction methods with a statistical significance level not gr€ater than 0.057, is ac-

cepted for the Differential-Evolution-based methods conducting a global search’of‘@near-optimal decision
trees. The OC1-DE algorithm does not reach the required statistical significance values since it is a recursive
partitioning approach that finds good partitions in each internal node of the tree but does nétthave the ability

of the global search methods.

Several lines of tuture work are derived from this thesis:

1. The effect of using other discretization strategies of the vector parameters determining the‘order of use
of the attributes to build axis-parallel DTs must be analyzed. The effect of applying some technique for
repairing the parameters of the vector must also be studied since in the current proposal those pa}ame—
ters generating redundant internal nodes are ignored. Finally, other metaheuristics can be implewierited
using the representation proposed in this thesis, and also they can compare the experimental restlts
with the current developed versions.

2. The impact of using different versions of the differential evolution algorithms described in the state
of the art literature to induce decision trees should be evaluated since it is expected to improve the
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performance of the induced trees by applying schemes maintaining the diversity of the population,
and applyihg an adjustment of the control parameters of the algorithm.

. The effect of applying multi-objective metaheuristics considering the combination of accuracy and the
size of the tregwithin the induction process should be studied.

. The use of other performance measures such as sensitivity, specificity, and others to guide the search
of a near-optimal decision tree should be analyzed.

. To improve the classifigation accuracy, a procedure must be implemented that uses a classifiers ensem-
ble constructed by the differential evolution algorithm.

. Finally, the scalability of the algorithm should be studied when trying to generate models for a dataset
with many attributes and/or-instanees.
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