

UNIVERSIDAD JUÁREZ <u>AUTÓNOMA DE TABASCO</u>

DIVISIÓN ACADÉMICA DE CIENCIAS BÁSICAS

DIMENSIÓN HAUSDORFF DE CONJUNTOS DE JULIA DE POLINOMIOS

TESIS que para obtener el grado de: DOCTOR EN CIENCIAS MATEMÁTICAS

PRESENTA:

LUIS MANUEL MARTÍNEZ GONZÁLEZ

DIRECTOR DE TESIS:

DR. GAMALIEL BLÉ GONZÁLEZ

CUNDUACÁN, TABASCO, 2019.

Universidad Juárez Autónoma de Tabasco

Estudio en la duda. Acción en la fe"

División Académica de Ciencias Básicas

DIRECCIÓN

18 de junio de 2019

M.C. Luis Manuel Martínez González Pasante del Doctorado en Ciencias Matemáticas P r e s e n t e.

Por medio del presente y de la manera más cordial, me dirijo a Usted para hacer de su conocimiento que proceda a la impresión del trabajo titulado **"Dimensión Hausdorff de Conjuntos de Julia de Polinomios",** en virtud de que reúne los requisitos para el EXAMEN PROFESIONAL POR TESIS DOCTORADO para obtener el grado de Doctor en Ciencias Matemáticas.

Sin otro particular, reciba un cordial saludo.

Atentamente.

Tabasc

Dr. Gerardo Delgadillo Piñón DIVISIÓN ACADÉMICA DE Director CIENCIAS BÁSICAS

C.c.p.- Archivo Dr'GDP/Dr'JGPS/emt

> Miembro CUMEX desde 2008 Consorcio de Universidades Mexicanas

Km.1 Carretera Cunduacán-Jalpa de Méndez, A.P. 24, C.P. 86690, Cunduacán, Tab., México. Tel/Fax: (993) 3581500 Ext. 6701 E-Mail: direccion.dacb@ujat.mx www.ujat.mx

CARTA DE AUTORIZACIÓN

El que suscribe, autoriza por medio del presente escrito a la Universidad Juárez Autónoma de Tabasco para que utilice tanto física como digitalmente la tesis de grado denominada DIMENSIÓN HAUSDORFF DE CONJUNTOS DE JULIA DE POLINOMIOS, de la cual soy autor y titular de los Derechos de Autor.

La finalidad del uso por parte de la Universidad Juárez Autónoma de Tabascode la tesis antes mencionada, será única y exclusivamente para difusión, educación y sin fines de lucro; autorización que se hace de manera enunciativa más no limitativa para subirla a la Red Abierta de Bibliotecas Digitales (RABID) y a cualquier otra red académica con las que la universidad tenga relación institucional.

Por lo antes manifestado, libero a la Universidad Juárez Autónoma de Tabasco de cualquier reclamación legal que pudiera ejercer respecto al uso y manipulación de la tesis mencionada y para los fines estipulados en éste documento.

Se firma la presente autorización en la ciudad de Villahermosa, Tabasco a 29 días del mes de agosto del año 2019.

made tabasco UTORIZO

Luis Manuel Martínez González

Agradecimientos

A Dios, por permitirme culminar una de mis metas anheladas,

por darme fuerzas para seguir adelante cuando flaqueaba.

A mis padres, por la confianza que tuvieron conmigo desde

el principio, por estar ahí cada que los necesité.

A mi esposa, por ser el pilar que me alentaba en los

momentos difíciles, por comprender y respetar mis tiempos.

A mi hija, por comprender los momentos que no pude

estar con ella y por ser mi motor para seguir en este camino.

A mi asesor de tesis, por la paciencia y la entrega para

con un servidor, por su apoyo incondicional, pero sobre todo por su amistad.

A mis revisores, por las observaciones hacia este trabajo

para la mejora del mismo.

re rabasce

Al CONACyT por el apoyo de la beca con número de registro

de becario 278336, sin ella no hubiese culminado mis estudios.

Índice general

Introducción			4
1.	Din	ámica de Aplicaciones Racionales	1
	1.1.	Dinámica local	1
	1.2.	Conjuntos de Julia y de Fatou.	3
		1.2.1. Aplicaciones tipo polinomial y renormalización	5
	1.3.	Hiperbolicidad	5
	1.4.	Dinámica de la familia cuadrática	6
	1.5.	Análisis de una familia cuártica	9
		1.5.1. Lugar de conexidad \cdot	10
	1.6.	Dimensión Hausdorff	15
		1.6.1. Medida s-dimensional de Hausdorff \ldots	15
		1.6.2. Definición de la dimensión Hausdorff	18
		1.6.3. Algoritmo del valor propio	20
2.	Dim	nensión Hausdorff de conjuntos de Julia de polinomios cuadrático	~ 26
	2.1.	Arcos regulares	26
	2.2.	Construcción de la curva Γ_c	27
		2.2.1. Caso $c \in W_0$	27
		2.2.2. Caso $c \in W_{\frac{p_0}{2}}$	28
		2.2.3. Caso $c \in W_{\frac{p_0}{q_0}, \frac{p_n}{q_n}}^{q_0}$	29
	2.3.	Descripción de la matriz de transición	30
	2.4.	Resultados	35
3.	Dimensión Hausdorff de conjuntos de Julia de polinomios cuárticos 41		
	3.1.	Arcos regulares	41
	3.2.	Construcción de Γ_b, Γ'_b	44
		3.2.1. Caso en que $b \in \mathcal{W}_0$	44
	3.3.	Descripción de la matriz de transición	45
	3.4.	Resultados	50
	3.5.	Conclusiones	52
Bi	Bibliografía		

A. Método de la potencia

ADDR BAR RANDOWNER BAR RANDOWNER RANDOWN

Introducción

Uno de los conceptos básicos en la geometría fractal es el de dimensión, la cual permite clasificar y distinguir la complejidad de un conjunto mas allá de su dimensión topológica. De una variedad de definiciones de dimensión fractal que han aparecido en las últimas décadas, la definición de Hausdorff, basada en una construcción de Carathéodory, es la más antigua y probablemente la más importante. La dimensión Hausdorff está basada en diferentes medidas, alguna de las cuales se pueden calcular, [F].

En el estudio de la dinámica de las aplicaciones racionales, el plano complejo compactificado lo podemos dividir en dos conjuntos disjuntos; el conjunto de las $z \in \widehat{\mathbb{C}}$ para los cuales existe una vecindad U donde la familia $\{R^n(z)\}$ es normal (conjunto de Fatou de R) y el complemento de este conjunto al cual se le llama conjunto de Julia de R. El conjunto de Fatou de una aplicación racional R, F_R , se le conoce también como conjunto estable de R, ya que las $z \in F_R$ tienen órbitas bien comportadas. Por otro lado, la dinámica en el conjunto de Julia de R, J_R , resulta ser más complicada. En particular, los puntos periódicos son densos en J_R y J_R puede ser toda la esfera, [B, M1, CG].

Para el caso en el que la aplicación es un polinomio f de grado $d \ge 2$, se tiene una componente especial del conjunto de F_f , la cual está formada por todas las $z \in \mathbb{C}$ cuya órbita tiende a infinito. A esta componente especial del conjunto F_f se le llama dominio (cuenca) de atracción del infinito y se denota por $A_t(\infty)$. Al complemento de esta componente se le llama conjunto de Julia lleno y está formado por todos los $z \in \mathbb{C}$ cuya órbita bajo f está acotada, a este conjunto se le denota por K_f . El conjunto de Julia de f resulta ser la frontera de K_f y coincide con la frontera de $A_f(\infty)$, [CG, B]. Una herramienta que se utiliza para caracterizar a los conjuntos de Julia de las funciones polinomiales es la dimensión Hausdorff. En particular, se han tenido importantes avances en el estudio de la dinámica de la familia de polinomios cuadráticos $f_c(z) = z^2 + c$, [DH, McMI, KL]. Para el caso cuadrático, denotemos por $K_c = K_{f_c}$, $J_c = J_{f_c}$ y por M al conjunto de Mandelbrot (lugar de conexidad), el cual consiste de los parámetros $c \in \mathbb{C}$ para los cuales el conjunto J_c es conexo. En 1982 Douady-Hubbard demostraron que el conjunto de Julia de cualquier f_c hiperbólico tiene dimensión Hausdorff (dim_H) menor que 2. En particular, si $c \notin M$, f_c es hiperbólico y J_c es un conjunto de Cantor con $dim_H(J_c) < 2$, [DH].

En 1998 Shishikura demostró que existe un conjunto residual de parámetros $c \in \partial M$ para los cuales $dim_H(J_c) = 2$. Además, demostró que $dim_H(\partial M) = 2$, [Sh1]. En 2005 Buff-Chéritat demostraron que existen parámetros $c \in \partial M$, tales que la medida de Lebesgue de J_c es positiva y en consecuencia $\dim_H(J_c) = 2$, [BC]. Además, se conjetura la existencia de un parámetro $c \in \mathbb{R}$, tal que la medida de Lebesgue de J_c es positiva, [LeZ]. Tanto los resultados de Shishikura como los de Buff-Chéritat están basados en el fenómeno de implosión parabólica descubierto y desarrollado por Douady-Hubbard, [DH, D2]. Gracias a la implosión parabólica, se puede demostrar que un polinomio con un ciclo parabólico de q pétalos genera un conjunto de Julia cuya dimensión es más grande que $\frac{2q}{q+1}$, [Zin, Sh1]. De hecho, el resultado de Shishikura se obtiene usando esta desigualdad y un argumento de Baire.

En general, para la familia de polinomios $P_c(z) = z^d + c$ se desconoce si existe alguna d tal que sup{ $dim_H(J_{P_c}): c \in \mathbb{R}$ } = 2. Dentro de los posibles candidatos se encuentran los polinomios infinitamente renormalizables, sin embargo se ha encontrado que la dimensión Hausdorff, de los conjuntos de Julia de los polinimios Feigenbaum con combinatoria alta, es menor que dos y además puede ser muy cercana a uno, [LS, LeS, Zu, AL]. En 2013 Zinsmeister demostró que en la familia P_c con d par, existe un conjunto $Y \subset \mathbb{R}$ de parámetros tal que J_{P_c} es conexo y $dim_H(J_{P_c}) > \frac{2d}{d+1}$ para cualquier $c \in Y$, [LeZ]. Para la familia cuadrática Ruelle demostró que la función $c \to \dim_H(J_c)$ restringida a una componente hiperbólica del conjunto de Mandelbrot M es real-analítica, [Ru]. Por otro lado, McMullen demostró que esta función es continua cuando $c \in [c_{Feig}, 1/4]$. Sin embargo, la función $c \to dim_H(J_c)$ es discontinua en varios puntos de la frontera del conjunto de Mandelbrot. En particular, la discontinuidad en el caso $c = \frac{1}{4}$ fue estudiada por Douady, Sentenac y Zinsmeister, [DSZ]. Denotemos por M_d el lugar de conexidad de la familia P_c , en 2001 Rivera-Letelier demuestra que hay cierta continuidad de la dimensión Hausdorff en los parámetros $c_0 \in \partial M_d$, tal que P_{c_0} es semihiperbólico (parámetros para los cuales el punto crítico no es recurrente y no tiene ciclos parabólicos) y la aproximación a c_0 desde el exterior de M_d es de "buena" manera, [JR]. En 2003, Haas generaliza los resultados de Shishikura mostrando que hay un subconjunto considerable del lugar de J_{P_c} – *inestabilidad* de K_{P_c} sobre el cual la función $c \rightarrow dim_H(J_c)$ es discontinua. Además, prueba que la función $c \to dim_H(J_c)$ es continua donde la acción de P_c en su conjunto de Julia es hiperbólica, así como también en cualquier punto en el lugar de J_{P_c} – *inestabilidad* con dimensión hiperbólica 2, [Sh]. Havard y Zinsmeister demostraron que cuando se restringe a la recta real, la derivada por la izquierda de la función $c \to dim_H(J_c)$ en el punto $c = \frac{1}{4}$ tiende a infinito. En 2014, Jackstaz prueba que la función $c \to dim_H(J_c)$ es analítica real en el intervalo (-3/4, 1/4), es convexa cerca de $\frac{1}{4}$ y numéricamente verifica que la $\dim_H(J_{P_c})$ con $c = -\frac{3}{4}$ es menor que $\frac{4}{3}$. Además, cuando c_n tiende a $-\frac{3}{4}$ por la izquierda la derivada de la función tiende a $-\infty$, [LJ, LJ1].

Debido a la complejidad que presenta el cálculo de la dimensión Hausdorff para un subconjunto de \mathbb{R}^n , en algunos casos particulares, se han desarrollado algoritmos que permiten aproximarla con suficiente precisión. Garnett calcula aproximaciones numéricas en el caso de aplicaciones expansivas, implementando un algoritmo basado en un teorema de Bowen-Sullivan, [G]. Por otro lado, Bodar y Zinsmeister calculan aproximaciones numéricas para polinomios cuadráticos hiperbólicos usando la teoría del formalismo termodinámico, donde calcular la dimensión Hausdorff de un conjunto se traduce a calcular el cero de una función denominada presión, [BZ]. Posteriormente McMullen propone un algoritmo llamado del valor propio el cual funciona para conjuntos de Julia de polinomios expansivos y realiza la implementación para $c \in \mathbb{R}$ de la familia cuadrática, [McMI].

En esta tesis se analiza y se implementa el algoritmo del valor propio para la familia cuadrática f_c , con $c \in \mathbb{C}$, así como para una familia de polinomios cuárticos obtenida por la composición de dos polinomios cuadráticos. Para la implementación del algoritmo se construye la espina dorsal del conjunto de Julia J_c , utilizando herramientas como modulación y renormalización, lo que permite construir una matriz de transición, para la cual se define una multiplicación especial que permite aproximar la dimension Hausdorff y calcularla en parámetros que no se habian reportado en la literatura.

Esta tesis está organizada en tres capítulos, en el capítulo uno se dan algunos conceptos fundamentales de sistemas dinámicos discretos, como son conjunto de Julia, conjunto de Fatou, lugar de conexidad, así como algunas de sus propiedades. En particular, se dan algunas propiedades de la dinámica de la familia cuadrática $f_c(z) = z^2 + c$ y se hace un análisis geométrico del espacio de parámetros de una familia cuártica. Además se presentan algunos conceptos de teoría de la medida, de dimensión Hausdorff y los elementos necesarios para la implementación del algoritmo del valor propio, [McMI].

En el capítulo dos se muestran los primeros resultados de este trabajo, los cuales consisten en calcular la dimensión Hausdorff de conjuntos de Julia de la familia cuadrática correspondiente a parámetros complejos y comparar los resultados con las aproximaciones obtenidas por McMullen en [McMI] para parámetros reales. En particular, se corroboró numéricamente la oscilación de la dimensión Hausdorff cerca del parámetro c = 1/4, conjeturada en trabajos anteriores, [McMI, BZ]. Los resultados obtenidos fueron publicados en la revista "Fractals, Complex Geometry, Patterns, and Scaling in Nature and Society Vol. 26, No. 03, (2018)", [MB]. En el capítulo tres se utilizan las herramientas del capítulo anterior para el cálculo de la dimensión Hausdorff, y se aplican para los conjuntos de Julia de la familia cuártica $Q_b(z) = z^4 + bz^2$. También, se muestran los resultados obtenidos para parámetros complejos en la componente principal del lugar de conexidad. Estos últimos resultados que hemos obtenido, forman parte de un manuscrito que se está preparando

para ser sometido en una revista indizada.

Peparanac

Capítulo 1 Dinámica de Aplicaciones Racionales

En este capítulo daremos algunas definiciones y resultados de dinámica discreta que son válidos para funciones continuas, aún cuando en el trabajo se analizarán particularmente funciones analíticas en el plano complejo. Definiremos los conjuntos de Julia y de Fatou de una aplicación racional R, analizaremos el caso polinomial y definiremos la dimensión Hausdorff de un subconjunto en el plano.

1.1. Dinámica local

Sea X un espacio métrico y $f : X \to X$ continua. Denotaremos por $f^n(x)$ a la *n*ésima composición de f consigo misma aplicada a $x \in X$. Un problema interesante es determinar cuando existe el límite en X de la sucesión $\{f^n(x)\}$.

Si $f : X \to X$ es una función y $x_0 \in X$, la **órbita** $\mathcal{O}_f(x_0)$ de un punto $x_0 \in X$ se define como el conjunto

$$\mathcal{O}_f(x_0) = \{x_0, f(x_0), f^2(x_0), f^3(x_0), f^4(x_0) \dots \}.$$

Existen órbitas que juegan un papel muy importante en el estudio de un sistema dinámico, tal es el caso de las órbitas finitas. El caso más sencillo es cuando la órbita tiene un solo punto x_0 , es decir, $f(x_0) = x_0$.

Sea x_0 un punto en el dominio de una función f. Decimos que x_0 es un punto: **periódico** de f con periodo k, cuando $f^k(x_0) = x_0$ para algún entero positivo k y $f^r(x_0) \neq x_0$ para 0 < r < k; **eventualmente periódico** o **preperiódico** de f si para algún $m \in \mathbb{N}$, $f^m(x_0)$ es un punto periódico de f, es decir, $f^{k+m}(x_0) \neq f^m(x_0)$ para algún $k \in \mathbb{N}$.

Los puntos fijos y los ciclos están entre los más importantes tipos de órbitas de un sistema dinámico, así que es importante clasificarlos.

Definición 1.1.1. Sea $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, donde $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \simeq S^2$, una función analítica en $x_0 \ y \ f(x_0) = x_0$.

1. El punto x_0 es atractor si $|f'(x_0)| < 1$, si $f'(x_0) = 0$ diremos que x_0 es superatractor. 2. El punto x_0 es repulsor si $|f'(x_0)| > 1$.

3. El punto x_0 es indiferente si $|f'(x_0)| = 1$, es decir, $f'(x_0) = e^{2\pi i\theta}$, $\theta \in \mathbb{R}$.

En términos de θ los puntos fijos indiferentes se pueden clasificar en parabólicos (θ racional) y Siegel o Cremer (θ irracional).

Dos funciones analíticas $f \ge g$, son **topológicamente (analíticamente) conjugadas** en el abierto $U \subset \widehat{\mathbb{C}}$, si existe un homeomorfismo (bi-holomorfismo) $\varphi : U \rightarrow \varphi(U)$ tal que $\varphi \circ f(z) = g \circ \varphi(z)$ para toda $z \in U$. Esto es, el siguiente diagrama conmuta

Observemos que si f y g son dos funciones topológicamente (analíticamente) conjugadas por medio de φ y z es un punto fijo de f, entonces $\varphi(z)$ es un punto fijo de g, ya que $g(\varphi(z)) = \varphi(f(z)) = \varphi(z)$. De hecho, aplicando inducción sobre n se puede mostrar que esto también es cierto para los puntos periódicos de f en U.

Se puede probar que para todo polinomio cuadrático $P(z) = a_0 + a_1 z + a_2 z^2$, existe c tal que P y $f_c(z) = z^2 + c$ son analíticamente conjugados. De hecho, la conjugación es una función afín de la forma az + b, con $a, b \in \mathbb{C}$, $a \neq 0$.

Para mostrar la importancia de la clasificación de los puntos fijos y del que una función sea conjugada enunciaremos algunos teoremas, los cuales pueden ser consultados en [B, CG].

Teorema 1.1.2. (Koenigs-1884). Sea f una función analítica con un punto fijo en z_0 y cuyo multiplicador es $\lambda = Df(z_0)$. Si $0 < |\lambda| < 1$ δ $|\lambda| > 1$, entonces existen U, V vecindades de z_0 y de 0, respectivamente, y un bi-holomorfismo $\varphi : U \to V$ que conjuga analíticamente f con $g(z) = \lambda z$. Además, esta conjugación es única, módulo multiplicación por un escalar real.

Este teorema nos dice que en una vecindad de los puntos fijos atractores o repulsores las funciones se comportan como multiplicación por λ . En particular, si z_0 es atractor, las órbitas de los puntos en una vecindad de z_0 convergen a z_0 . Este teorema también es válido para órbitas periódicas atractoras o repulsoras de periodo k, sustituyendo f por f^k .

Si $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ es una aplicación racional y z^* un punto fijo atractor de f, se define la *cuenca de atracción* de z^* como el conjunto

$$A_f(z^*) = \{ z \in \widehat{\mathbb{C}} : \lim_{n \to \infty} f^n(z) = z^* \}.$$

La cuenca inmediata de atracción de z^* denotada por $A_f^*(z^*)$, es la componente conexa de $A_f(z^*)$ que contiene a z^* .

Las cuencas de atracción para puntos k-periódicos atractores se definen usando a f^k en vez de f y la cuenca inmediata de atracción es la unión de las componentes

conexas que contienen la órbita periódica. Por definición, los puntos k-periódicos atractores siempre tienen dominio inmediato de atracción abiertos y diferentes del vacío.

Teorema 1.1.3. (Fatou-1919). Sea f una aplicación racional. Si z_0 es un punto periódico atractor de f, entonces la cuenca inmediata de atracción de z_0 , $A_f^*(z_0)$ contiene al menos un punto crítico de f.

Teorema 1.1.4. (Böttcher-1904). Sean f una aplicación analítica $y z_0$ un punto fijo super-atractor. Si $f(z) = z_0 + a_k(z - z_0)^k + \ldots$, con $a_k \neq 0$, entonces existen U, V vecindades de $z_0 \ y \ 0$, respectivamente, y un bi-holomorfismo $\varphi : U \to V$ que conjuga $f(z) \ y \ g(z) = z^k$. Esta conjugación es única módulo multiplicación por una raíz (k-1)-ésima de la unidad.

De igual manera que en el teorema de Koenigs, este teorema es válido para órbitas periódicas super-atractoras.

1.2. Conjuntos de Julia y de Fatou.

En esta sección definimos el conjunto de Julia y de Fatou de una aplicación racional R y las propiedades que estos conjuntos presentan. Daremos algunas definiciones y resultados que son válidos en un contexto más general pero nos restringiremos a las funciones racionales,

donde P y Q son polinomios primos entre sí. La aplicación $R : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ es una función analítica y su grado es el máximo de los grados de P y Q. En este trabajo suponemos que el grado de R es mayor o igual que 2. Los conceptos y resultados mostrados en esta sección pueden ser ampliados consultando [B, CG, M1].

Para definir los conjuntos de Julia y de Fatou de una aplicación racional veamos la definición de familia normal.

Definición 1.2.1. Sea $U \subset \widehat{\mathbb{C}}$ un conjunto abierto y conexo. Sea $\mathfrak{S} = \{f : U \to \widehat{\mathbb{C}}\}$ una familia de funciones analíticas en U. La familia \mathfrak{S} es normal en $z_0 \in U$ si para toda sucesión $\{f_n\} \subset \mathfrak{S}$ existe una subsucesión $\{f_{n_k}\}$, tal que converge uniformemente en subconjuntos compactos de U, en una vecindad de z_0 , a una función f_0 .

Definición 1.2.2. Sea R una aplicación racional. Decimos que $z_0 \in \widehat{\mathbb{C}}$ pertenece al conjunto de Fatou de R, F_R , si la familia $\{R^n\}$ es normal en una vecindad de z_0 . El conjunto de Julia J_R se define como el complemento de F_R .

Si R es una aplicación racional, se tienen las siguientes propiedades de los conjuntos J_R y F_R que pueden ser consultadas en [B, CG, McM]:

1. El conjunto J_R es compacto, perfecto y diferente del vacío.

- 2. Los conjuntos J_R y F_R son completamente invariantes, es decir, $R^{-1}(J_R) = R(J_R) = J_R$ y de igual manera para F_R .
- 3. Si f denota la k-ésima iterada de R para alguna $k \in \mathbb{N}$, es decir, $f = R^k$, entonces $J_R = J_f$ y $F_R = F_f$.
- 4. Si $z \in J_R$, entonces el conjunto $\bigcup_{n=1}^{\infty} R^{-n}(z)$ es denso en J_R .
- 5. Se
azun punto periódico de periodok d
eR.

a) Si z es atractor, entonces $z \in F_R$. b) Si z es repulsor, entonces $z \in J_R$.

6. Los puntos periódicos repulsores de R son un conjunto denso en J_R , es decir, $J_R = \overline{\{\text{puntos periódicos repulsores de R}\}}.$

El conjunto postcrítico está definido por

$$\mathcal{C}_R = \overline{\{R^n(z_0) : z_0 \text{ es punto crítico de R y } n \in \mathbb{N}\}},$$

es decir, C_R es la cerradura de la unión de las órbitas de todos los puntos críticos de una aplicación racional R. El conjunto C_R está estrechamente ligado con la dinámica de R, como podemos ver en el siguiente resultado, consecuencia de los trabajos de Fatou, [CG].

Proposición 1.2.3. El conjunto postcrítico C_R contiene los ciclos atractores de R, los ciclos indiferentes que pertenecen al conjunto de Julia y la frontera de cada disco de Siegel y anillo de Herman.

Observe que si f es un polinomio de grado d > 1, entonces el infinito es un punto fijo super-atractor y por el teorema de Böttcher existe una vecindad U del infinito donde f es analíticamente conjugada a la función z^d . En consecuencia, la órbita de cualquier punto $z \in U$ converge al infinito y por lo tanto, $z \in F_f$.

Definimos el dominio de atracción del infinito

$$A_f(\infty) = \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \} \subset F_f$$

y el conjunto de Julia lleno de f por

 $K_f = \{ z \in \mathbb{C} : O_f(z) \text{ es acotada } \}.$

Como el interior de K_f está contenido en F_f , se tiene que J_f es igual a la frontera de K_f que a su vez es igual a la frontera de $A_f(\infty)$.

Por definición, tenemos las siguientes propiedades de K_f :

1. Es compacto, perfecto y diferente del vacío.

2. Es un conjunto lleno, es decir, su complemento en $\widehat{\mathbb{C}}$ es conexo.

3. Su frontera es igual al conjunto de Julia de f.

Teorema 1.2.4. (Fatou-1919). Sea f un polinomio. El conjunto K_f es conexo si y sólo si la órbita de cada punto crítico es acotada.

1.2.1. Aplicaciones tipo polinomial y renormalización

En esta sección definiremos las aplicaciones tipo polinomial y renormalización para polinomios cuadráticos. Los resultados aquí presentados se pueden consultar en [DH1, McM].

Definición 1.2.5. Una función tipo polinomial de grado $d \ge 2$, es una tripleta (U, V, f) donde $U \not V$ son subconjuntos de \mathbb{C} isomorfos a discos, con U relativamente compacto en V, $y f : U \rightarrow V$ es una función \mathbb{C} -analítica y propia de grado d.

Definición 1.2.6. Sea $f: U \to V$ una función tipo polinomial. El conjunto de Julia lleno de f está definido como el conjunto de puntos en U que no escapan de U bajo iteración, es decir,

$$K_f := \{ z \in U : f^n(z) \in U \ \forall \ n \ge 0 \}.$$

Una definición equivalente es

$$K_f = \bigcap_{n \ge 0} f^{-n}(\overline{U}).$$

Definimos el conjunto de Julia de f como

Dos funciones tipo polinomiales $f \ge g$ son *hibridamente equivalentes* si existe una conjugación cuasiconforme ϕ entre $f \ge g$, definida en una vecindad de sus respectivos conjuntos de Julia lleno, tal que $\overline{\partial}\phi = 0$ en K_f , [DH1]. El siguiente resultado puede ser consultado en [DH1].

Teorema 1.2.7. (Rectificación, Douady-Hubbard)

- 1. Toda función tipo polinomial f es hibridamente equivalente a un polinomio g del mismo grado.
- 2. Si K_f es conexo, el polinomio g es único módulo una conjugación afín.

1.3. Hiperbolicidad

En esta sección daremos la definición de aplicaciones racionales hiperbólicas y mostraremos las propiedades que hacen a este tipo de aplicaciones bien comportadas. Los resultados aquí expuestos pueden ser consultados en [McM, B, CG].

Definición 1.3.1. Una aplicación racional, $R : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$, es hiperbólica si las órbitas de todos los puntos críticos convergen a los ciclos periódicos atractores de R.

De entre todas las funciones racionales, las hiperbólicas son las que tienen un comportamiento más sencillo, ya que cuando R es hiperbólica, existe un conjunto finito $A \subset \widehat{\mathbb{C}}$ que atrae a un subconjunto abierto de $\widehat{\mathbb{C}}$ de medida total. El siguiente resultado caracteriza la propiedad de ser hiperbólico y puede ser consultado en [McM].

Teorema 1.3.2. (Caracterización de Hiperbolicidad). Sea R una aplicación racional. Las siguientes condiciones son equivalentes:

- 1. El conjunto postcrítico C_R es ajeno al conjunto de Julia J_R .
- 2. No hay puntos críticos o ciclos parabólicos en el conjunto de Julia.
- 3. Cada punto crítico de R converge a un ciclo atractor bajo iteración positiva.
- 4. Existe una métrica conforme suave ρ definida en una vecindad del conjunto de Julia tal que $|| R'(z) ||_{\rho} > C > 1$ para toda $z \in J_R$.
- 5. Existe un entero n > 0 tal que \mathbb{R}^n expande estrictamente la métrica esférica en el conjunto de Julia.

A las aplicaciones racionales hiperbólicas algunas veces se les llama expansivas o que satisfacen el axioma A de Smale. El siguiente resultado de aplicaciones racionales hiperbólicas puede ser consultado en [DH].

Teorema 1.3.3. El conjunto de Julia de una aplicación racional hiperbólica tiene medida de Lebesgue cero.

De hecho, la dimensión Hausdorff del conjunto de Julia de una aplicación racional hiperbólica es estrictamente menor que 2, [DH, S2].

1.4. Dinámica de la familia cuadrática

En esta sección presentaremos un resumen de algunos resultados de la familia cuadrática $f_c(z) = z^2 + c$ para $c \in \mathbb{C}$. Denotaremos por $K_c = K_{f_c}$, $J_c = J_{f_c}$ y $A_c(\infty) = A_{f_c}(\infty)$. Del teorema 1.2.4 tenemos:

Corolario 1.4.1. El conjunto J_c es conexo si y sólo si la órbita de cero es acotada.

Corolario 1.4.2. El conjunto J_c es un conjunto de Cantor si y sólo si la órbita del cero converge a infinito, es decir, $0 \in A_c(\infty)$.

Un conjunto de especial interés es el conjunto de **Mandelbrot** M definido como:

$$M = \{ c \in \mathbb{C} : J_c \text{ es conexo} \} = \{ c \in \mathbb{C} : \mathcal{O}_c(0) \text{ es acotada} \}.$$

Notemos que si c = 0, entonces K_c es el disco unitario cerrado centrado en cero y por lo tanto, es conexo, véase la figura 1.1. De aquí tenemos que M es no vacío.

Proposición 1.4.3. Sea $S = \max\{2, |c|\}$. Si |z| > S, entonces

$$\lim_{n\to\infty}f_c^n(z)=\infty$$

Figura 1.1: Conjunto de Julia llen
o K_c para: c=0.253, c=-0.75, c=0, c=0.5358+0.606
i y c=-1.3852

Observación: Si |c| > 2, entonces

$$\lim_{d \to \infty} f_c^n(0) = \infty.$$

Corolario 1.4.4. El conjunto M está contenido en el disco

$$\overline{D_2(0)} = \{ c \in \mathbb{C} : |c| \le 2 \}.$$

Teorema 1.4.5. (Douady-Hubbard-1982). El conjunto M es conexo y compacto. Además, $\widehat{\mathbb{C}} \setminus M$ es conexo.

Teorema 1.4.6. (Shishikura-1992). La frontera del conjunto M tiene dimensión Hausdorff dos.

Este resultado proporcionó el primer ejemplo de un conjunto considerado fractal y cuya dimensión es un número entero.

Los siguientes dos resultados pueden ser consultados en [McM].

Teorema 1.4.7. La frontera del conjunto de Mandelbrot M es igual al conjunto de las $c \in \mathbb{C}$ tales que la familia de funciones

$$\{c \to f_c^n(0) : n = 1, 2, 3, \ldots\}$$

no es una familia normal en c.

Teorema 1.4.8. Si f_c tiene un ciclo indiferente, entonces c pertenece a la frontera del conjunto de Mandelbrot.

Si U es una componente del interior de M y $c_0 \in U$ es un parámetro hiperbólico, se puede mostrar que f_c es hiperbólico para toda $c \in U$ y U es isomorfo al disco. Este isomorfismo está definido por el multiplicador de la órbita periódica atractora y se extiende continuamente a la frontera, por lo que a cada parámetro en la frontera de una componente hipérbolica del interior de M se le asocia un ángulo interno, [DH, D4]. Por otro lado, si c no pertenece a M, f_c es hiperbólico porque el punto crítico converge al punto fijo super-atractor en infinito. Una conjetura muy importante, la cual fue propuesta por Fatou para la familia de aplicaciones racionales, es la conjetura de la densidad de las aplicaciones racionales hiperbólicas. Esta conjetura restringida a la familia de polinomios cuadráticos se traduce en demostrar que las componentes del interior de M está formado por componentes hiperbólicas. Así mismo, Douady-Hubbard mostraron que la conexidad local de la frontera del conjunto de Mandelbrot implica que las componentes hiperbólicas son densas en M y por lo tanto, la conjetura de Fatou para la familia cuadrática, [DH]. Un concepto muy útil en la comprensión de la conexidad local de la frontera de M, ha sido el de rayos externos.

Dado que el complemento del conjunto de Mandelbrot es simplemente conexo en $\widehat{\mathbb{C}}$, por el teorema de Riemann, existe un biholomorfismo ϕ entre $\widehat{\mathbb{C}} \setminus M$ y \mathbb{D} . Además por el teorema de Carathéodory, ϕ se extiende continuamente a la frontera de \mathbb{D} si y sólo si, la frontera de M es localmente conexa [DH, D1].

Como el polinomio f_c tiene un punto fijo super-atractor en el infinito, por el teorema de Böttcher existe una vecindad U del infinito donde el polinomio f_c es analíticamente conjugado a la función z^2 . Denotemos por ϕ_c al biholomorfismo que realiza la conjugación, deja fijo al infinito y es tangente a la identidad en el infinito. Si U es el conjunto máximo donde ϕ_c conjuga a f_c con z^2 , entonces se tienen dos casos [DH]:

- 1. Si $c \in M$, $U = \widehat{\mathbb{C}} \setminus K_c$.
- 2. Si $c \notin M$, entonces U es una vecindad del infinito que contiene al valor crítico c.

A partir del biholomorfismo $\phi_c,$ Douady-Hubbard definieron la función

$$\Phi_M : \widehat{\mathbb{C}} \setminus M \to \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}$$
$$c \longrightarrow \phi_c(c),$$

y demostraron que es un biholomorfismo que relaciona al espacio dinámico con el espacio de parámetros. Para entender el comportamiento de Φ_M en la frontera se definen los rayos externos a M y a J_c . Si $\theta \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$, entonces el *rayo externo* a M de ángulo θ es el conjunto

$$R_M(\theta) = \Phi_M^{-1}(\{z \in \mathbb{C} : z = re^{2\pi i\theta}, 1 < r < \infty\}).$$

Si el lím_{$r\to1$} $R_M(\theta) = c$, se dice que el rayo de ángulo θ aterriza en c y que c tiene a θ como argumento externo.

Se define el equipotencial $E_M(r)$ de M, de radio r > 1, como

$$E_M(r) = \Phi_M^{-1}(\{z \in \mathbb{C} : z = r \exp^{2\pi i\theta}, \theta \in \mathbb{T}\})$$

Ambas definiciones son válidas para los conjuntos de Julia lleno conexos, si sustituimos a Φ_M por ϕ_c . Teorema 1.4.9. (Douady-Hubbard-1982). Sea c un parámetro en la frontera de una componente hiperbólica W de M y con ángulo interno $t \in \mathbb{T}$.

- 1. Sit is racional y $c \neq \frac{1}{4}$, entonces c tiene dos argumentos externos, es decir, hay dos ángulos θ_1, θ_2 tales que los rayos externos $R_M(\theta_i)$ aterrizan en c, para i = 1, 2. Además, los rayos $R_c(\theta_i)$ aterrizan en un punto de la frontera de la componente del interior de K_c que contiene a c y son adyacentes a ésta.
- 2. Si t es irracional, entonces existe un único ángulo θ tal que $R_M(\theta)$ aterriza en c.

Además de este resultado. Douady y Hubbard demostraron que todos los rayos externos de ángulo racional θ aterrizan en la frontera de M y de hecho mostraron que si θ es periódico bajo la función 2θ , entonces $R_M(\theta)$ aterriza en un parámetro c parabólico (f_c tiene una órbita parabólica) y en caso contrario, $R_M(\theta)$ aterriza en un parámetro de Misiurewicz (cero es pre-periódico). Por otro lado, Yoccoz demostró que se tiene conexidad local en todos los parámetros que se encuentran en la frontera de una componente hiperbólica de M, [H]. En esta dirección se han tenido importantes avances los cuales están relacionadas con la teoría de renormalización y pueden ser consultados en [KL] y en las referencias allí citadas.

La renormalización es una herramienta muy útil para estudiar las iteradas de f_c , ya que éste va subiendo de grado, pero se busca obtener una vecindad del punto crítico, donde f_c^n se vea como una aplicación de tipo polinomial de grado dos con conjunto de Julia conexo, [McM]. Específicamente, tenemos los siguientes resultados, los cuales pueden ser consultados en [McM].

Definición 1.4.10. Sea $f_c(z) = z^2 + c$ con conjunto de Julia conexo. La función f_c^n es renormalizable si existen abiertos $U \ y \ V$ en \mathbb{C} tales que $0 \in U \ y \ f_c^n : U \to V$ es una función tipo polinomial cuadrática con conjunto de Julia conexo.

Teorema 1.4.11. Cualesquiera dos renormalizaciones de f_c^n tienen el mismo conjunto de Julia lleno.

Teorema 1.4.12. Si $f_c^a y f_c^b$ son renormalizables, entonces también lo es f_c^k , donde k es el mínimo común multiplo de a y b. El correspondiente conjunto de Julia lleno satisface $K_c^k = K_c^a \cap K_c^b$.

Corolario 1.4.13. Si f_c^a y f_c^b son renormalizables y a divide a b entonces K_c^b C K_c^a.
1 5 Análisis de una familia cuártica

En esta sección se estudia el espacio de parámetros de una familia de polinomios cuárticos que se obtienen de la composición de dos polinomios cuadráticos de la forma $P_a(z) = az + z^2$. Partimos de esta familia cuadrática porque el cero es un punto fijo, el cual resulta ser un punto fijo de la aplicación cuártica $P_{a_1}(P_{a_2}(z))$.

1.5.1. Lugar de conexidad

La familia de polinomios cuárticos en la que nos enfocaremos resulta de la composición de $P_a(z) = az + z^2$ y $P_b(z) = bz + z^2$ con $a, b \in \mathbb{C}$. Denotaremos por

$$P_{ba}(z) = P_b(P_a(z)) = z^4 + 2az^3 + (b+a^2)z^2 + baz$$

Definición 1.5.1. El lugar de conexidad C, en el espacio de parámetros \mathbb{C}^2 , de la familia de polinomios P_{ba} se define por:

$$\mathcal{C} = \{(a, b) \in \mathbb{C}^2 : K_{P_{ba}} \text{ es conexo}\}.$$

Por el teorema de Fatou 1.2.4, el lugar de conexidad C está determinado por las órbitas de los puntos críticos, los cuales deben ser acotadas. Los puntos críticos de la familia $P_{ba}(z)$ son:

•
$$c_1 = \frac{-a}{2}$$

• $c_2 = \frac{-a + \sqrt{a^2 - 2b}}{2}$
• $c_3 = \frac{-a - \sqrt{a^2 - 2b}}{2}$.

Es importante hacer notar que $P_{ba}(c_2) = P_{ba}(c_3) = \frac{-b^2}{4}$, por lo que estos polinomios cuárticos a lo mas presentan dos dinámicas.

Para analizar el lugar de conexidad de esta familia haremos algunas restricciones que nos permitan determinar ciertas componentes hiperbólicas en dicho espacio. Empezaremos analizando el espacio de parámetros cuando uno de los puntos críticos de $P_{ba}(z)$ está fijo.

• Caso para el que $c_1 = \frac{-a}{2}$ es fijo.

Resolviendo la ecuación:

$$P_{ba}(c_1) = \frac{a^4}{16} - \frac{a^4}{4} + \frac{ba^2}{4} + \frac{a^4}{4} - b\frac{a^2}{2} = -\frac{a}{2}.$$

Obtenemos que a = 0 y que $b = \frac{a^2}{4} + \frac{2}{a} = \frac{a^3+8}{4a}$

• Caso en el que a = 0.

Notemos que si a = 0, entonces $P_{ba}(z)$ se simplifica a $Q_b(z) = bz^2 + z^4$ y los puntos críticos se convierten en

$$\circ c_1 = 0$$

$$\circ c_2 = \frac{\sqrt{-2b}}{2}$$

$$\circ c_3 = \frac{-\sqrt{-2b}}{2}$$

Debido a que c_1 es fijo y a que $Q_b(c_2) = Q_b(c_3)$, el lugar de conexidad de $Q_b(z)$ es el conjunto de $b \in \mathbb{C}$ tal que la órbita de c_2 permanece acotada, el cual se muestra en la figura 1.2.

Figura 1.2: Lugar de conexidad para la familia $Q_b(z) = bz^2 + z^4$.

- Caso en el que $b = \frac{a^3+8}{4a}$. Para este caso $P_a(z) = \frac{z(z+a)(a^3+4a^2z+4az^2+8)}{4a}$ y los puntos críticos de $P_a(z)$ son:
 - $c_1 = -\frac{a}{2}$ $c_2 = \frac{-2a + \sqrt{2a^4 - 16a}}{4a}$ $c_3 = -\frac{-2a + \sqrt{2a^4 - 16a}}{4a}$

Ya sabemos que c_1 es un punto fijo de $P_a(z)$, por lo que para conocer el lugar de conexidad, basta observar para cuales valores de $a \in \mathbb{C}$ la órbita de c_2 permanece acotada. Con esta condición se obtiene el lugar de conexidad que se muestra en la figura 1.3.

• Caso en el que c_2 es fijo. Resolviendo $P_{ba}(c_2) = c_2$ se obtiene que b = 0 o que $a = \frac{b^3+8}{4b}$. • Si b = 0, entonces $(P_a(z))^2 = (az + z^2)^2$ y los puntos críticos son:

 $\circ c_1 = 0$ $\circ c_2 = -a$ $\circ c_3 = -\frac{a}{2}.$

Observe que c_1 es un punto fijo de $(P_a(z))^2$ y que c_2 es es eventualmente fijo, por lo que para obtener el lugar de conexidad de $(P_a(z))^2$, necesitamos que la órbita de c_3 sea acotada. En la figura 1.4 se muestra el lugar de conexidad.

Figura 1.4: Lugar de conexidad para la familia $(P_a(z))^2 = (az + z^2)^2$.

• Si $a = \frac{b^3 + 8}{4b}$, entonces $P_{ba}(z) = \frac{z(4zb + b^3 + 8)(4z^2b + zb^3 + 8z + 4b^2)}{16b^2}$ y los puntos críticos son: • $c_1 = -\frac{b^3 + 8}{4b}$

•
$$c_2 = -\frac{b^2}{4}$$

• $c_3 = -\frac{2}{b}$.

Notemos que c_2 es un punto fijo de $P_{ba}(z)$ y c_3 es un punto eventualmente fijo, por lo que para obtener el lugar de conexidad de $P_{ba}(z)$ basta observar para que valores de $b \in \mathbb{C}$, la órbita de c_1 es acotada. En la figura se muestra el lugar de conexidad.

En [Ro] se demuestra que la familia $Q_b(z) = bz^2 + z^4$ no es afínmente conjugada a la familia $(P_a(z))^2 = (az + z^2)^2$ y que la familia

$$\widehat{Q}_b(z) = \frac{z(4zb+b^3+8)(4z^2b+zb^3+8z+4b^2)}{16b^2}$$

tampoco es afínmente conjugada a la familia

$$\widehat{P}_a(z) = \frac{z(z+a)(4az^2 + 4a^2z + a^3 + 8)}{4a}.$$

Figura 1.5: Lugar de conexidad para la familia $P_{ba}(z) = \frac{z(4zb+b^3+8)(4z^2b+zb^3+8z+4b^2)}{16b^2}$

Por lo que es necesario estudiar separadamente a cada una de esas familias. En particular, en este trabajo analizaremos la familia $Q_b(z) = bz^2 + z^4$ correspondiente al caso a = 0. Para esta familia tenemos las siguientes propiedades geométricas. Sea

$$\overline{D}_{\sqrt{8}}(0) = \{ z \in \mathbb{C} : |z| \le \sqrt{8} \}.$$

Proposición 1.5.2. Sea $S = \max\{2, |b|\}$. Si |z| > S, entonces

$$\lim_{n} Q_b^n(z) = \infty.$$

Demostración. Supongamos que |z| > S. En particular |z| > 1.

$$\frac{|Q_b(z)|}{|z|} > \frac{|Q_b(z)|}{|z|^3}$$

$$= \frac{|z^4 + bz^2|}{|z|^3}$$

$$\geq \frac{|z|^4 - |b||z|^2}{|z|^3}$$

$$= |z| - \frac{|b|}{|z|}$$

$$\geq |z| - 1$$

$$> 1.$$
ucesión creciente y se sigue el resultado.

Por lo tanto, $|Q_b^n(z)|$ es una sucesión creciente y se sigue el resultado.

Observación 1.5.3. Note que $\mathcal{J}_b \subset \overline{D}_{\sqrt{8}}(0)$ y si $|b| > \sqrt{8}$, entonces la órbita del punto crítico $c_2 = \frac{\sqrt{-2b}}{2}$ se va a infinito.

Corolario 1.5.4. El conjunto \mathcal{M} está contenido en el disco $\overline{D}_{\sqrt{8}}(0)$.

Proposición 1.5.5. Los polinomios $Q_{b_1}(z)$ y $Q_{b_2}(z)$ son afínmente conjugados por la conjugación $\varphi(z) = \alpha z$, donde $\alpha^3 = 1$ y $b_1 = \alpha b_2$.

Demostración. Sean $Q_{b_1}(z) = z^4 + b_1 z^2$, $Q_{b_2}(z) = z^4 + b_2 z^2$ y $\varphi(z) = \alpha z + \beta$. Los polinomios $Q_{b_1}(z)$ y $Q_{b_2}(z)$ son afínmente conjugados si $\varphi(Q_{b_1}(z)) = Q_{b_2}(\varphi(z))$, para alguna $\alpha \neq 0$.

Por un lado

$$\varphi(Q_{b_1}(z)) = \alpha(z^4 + b_1 z^2) + \beta = \alpha z^4 + \alpha b_1 z^2 + \beta$$

y por otro,

$$Q_{b_2}(\varphi(z)) = Q_{b_2}(\alpha z + \beta) = (\alpha z + \beta)^4 + b_2(\alpha z + \beta)^2 = \alpha^4 z^4 + 4\alpha^3 z^3 \beta + 6\alpha^2 z^2 \beta^2 + 4\alpha z \beta^3 + \beta^4 + b_2(\alpha^2 z^2 + 2\alpha \beta z + \beta^2) = \alpha^4 z^4 + 4\alpha^3 \beta z^3 + (6\alpha^2 \beta^2 + b_2 \alpha^2) z^2 + (4\alpha \beta^3 + 2b_2 \alpha \beta) z + \beta^4 + \beta^2.$$

Igualando coeficientes se tiene que:

$$= \alpha^4 \tag{1.1}$$

$$0 = 4\alpha^3\beta \tag{1.2}$$

$$b_1 = 6\alpha^2\beta^2 + b_2\alpha^2 \tag{1.3}$$

$$0 = 4\alpha\beta^3 + 2b_2\alpha\beta \tag{1.4}$$

$$\beta = \beta^4 + \beta^2. \tag{1.5}$$

Como α deber ser distinta de cero de (1.1) tenemos que

 α

$$\alpha^3 = 1$$
,

De (1.2) tenemos que $\beta = 0$ y de (1.3) tenemos que

$$\alpha^{3} = \mathbf{I}$$

$$\beta = 0 \text{ y de (1.3) tenemos que}$$

$$\alpha b_{1} = 6\alpha^{2}0^{2} + b_{2}\alpha^{2} = b_{2}\alpha^{2} \Rightarrow b_{1} = \alpha b_{2}.$$

Figura 1.6: Conjunto de Julia lleno \mathcal{K}_b para los parámetros: b=-2, b=1+1.732i, b=1-1.732i, b=-1.2+1.0912i, b=-1, b=-1.21+1.1052i

Dimensión Hausdorff 1.6.

En esta sección daremos la definición de dimensión Hausdorff y algunas de sus propiedades. Para ello comenzaremos definiendo la medida s-dimensional de Hausdorff. Los conceptos y resultados aquí presentados pueden ser consultados en [F, McMI, McMII].

Medida s-dimensional de Hausdorff 1.6.1.

Sea U un subconjunto del espacio euclidiano \mathbb{R}^n , el diámetro de U está definido como:

$$|U| = \sup\{|x - y| : x, y \in U\}.$$

Cuando U es compacto, el diámetro coincide con la máxima distancia entre los pares de puntos de U.

conju. imos Una δ -cubierta de $F \subset \mathbb{R}^n$ es una colección numerable o finita $\{U_i\}$ de conjuntos de diámetro a lo más δ que cubren a F, i.e,

$$F \subset \bigcup_{i=1}^{\infty} U_i$$

 $\operatorname{con} 0 < |U_i| \le \delta$ para cada $i \in \mathbb{N}$.

Supóngase que
$$F \subset \mathbb{R}^n$$
 y s es un número no negativo. Para algún $\delta > 0$ definimos

$$H^s_{\delta}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_i|^s : \{U_i\} \text{ es una } \delta \text{-cubierta de } F \right\}.$$

Esto es, el ínfimo se toma sobre las sumas de las s-ésimas potencias de los diámetros de todas las δ -cubiertas de F. Cuando δ decrece, la clase de cubiertas admisibles de F en la ecuación anterior se reduce, por consiguiente, el ínfimo de la definición H^s_{δ} se incrementa y así se aproxima a un límite cuando δ tiende a 0 y escribimos:

$$H^s(F) = \lim_{\delta \to 0} H^s_{\delta}(F).$$

Notemos que este ínfimo es mayor o igual a cero va que sumamos potencias de números mayores \mathbf{O} iguales a cero. Este límite existe para todo subconjunto F de \mathbb{R}^n , sin embargo, el valor límite puede ser 0 o ∞ .

Proposición 1.6.1. H^s_{λ} es una medida sobre los conjuntos de Borel en \mathbb{R}^n .

Observación 1.6.2. Sea $E \subset F$. Tomamos a $\{U_i\}$ una δ -cubierta de F, entonces $\{U_i\}$ es una δ -cubierta de E, por lo que

$$\{\sum_{i} |U_{i}|^{s} : \{U_{i}\} \delta \text{-cubierta de } F\} \subset \\ \subset \{\sum_{i} |U_{i}|^{s} : \{U_{i}\} \delta \text{-cubierta de } E\}$$

en consecuencia tomando ínfimos tenemos que $H^s_{\delta}(E) \leq H^s_{\delta}(F)$.

Teniendo ya definida la medida s-dimensional de Hausdorff, vamos a comprobar más adelante que existe un valor de s para el cual la medida de un conjunto $E \subset \mathbb{R}^2$ no es trivial. Además, vamos a ver que ese valor es único.

Como ya sabemos,

$$H^s(F) = \lim_{\delta \to 0} H^s_{\delta}(F)$$

siempre existe y puede ser $0, \infty$ o un número real positivo. Así, si tenemos el conjunto de las δ -cubiertas admisibles para A podemos tomar cualquier subcolección de las δ -cubiertas. Si tomamos el límite del ínfimo de las sumas de las s-ésimas potencias de los diámetros de esa subcolección de δ -cubiertas de A y ese límite existe, entonces es el mismo que $\lim_{\delta \to 0} H^s_{\delta}(A)$.

Ejemplo 1.6.3. Si $A \subset \mathbb{R}^n$ es una bola de radio r, entonces

$$H^n(A) = \frac{2^n}{C_n} \operatorname{Vol}_n(A).$$

Donde C_n es el volumen de la bola n-dimensional de radio 1.

Proposición 1.6.4. Si $F \subset \mathbb{R}^n$ y $\lambda > 0$, entonces

$$H^s(\lambda F) = \lambda^s H^s(F),$$

donde $\lambda F = \{\lambda x : x \in F\}$, es decir, el conjunto F es multiplicado por un factor λ .

Demostración. Si $\{U_i\}$ es una δ -cubierta de F, entonces $\{\lambda U_i\}$ es una $\lambda\delta$ -cubierta de λF . De lo que se tiene que

$$H^s_{\lambda\delta} \le \sum |\lambda U_i|^s = \lambda^s \sum |U_i|^s.$$

En particular, tenemos que

Puesto que esto es válido para toda δ -cubierta $\{U_i\}$, haciendo δ tender a 0 se obtiene que $H^s(\lambda F) \leq \lambda^s H^s(F)$.

 $H^s_{\lambda\delta} \le \lambda^s H^s_{\delta}(F).$

Si $\{U_i\}$ es una δ -cubierta de λF entonces $\{\frac{1}{\lambda}U_i\}$ es una $\frac{1}{\lambda}\delta$ -cubierta de F. De lo que se tiene que

$$H^{s}_{\frac{1}{\lambda}\delta} \leq \sum |\frac{1}{\lambda}U_{i}|^{s} = \frac{1}{\lambda^{s}} \sum |U_{i}|^{s} \Leftrightarrow \lambda^{s}H^{s}_{\frac{1}{\lambda}\delta} \leq \sum |U|^{s}.$$
$$\lambda^{s}H^{s}_{1s} \leq H^{s}_{\delta}.$$

En particular

Definición 1.6.5. Sea $F \subset \mathbb{R}^n$. Una aplicación $f : F \to \mathbb{R}^n$ es Hölder continua con exponente $\alpha > 0$, si existe $c \ge 0$ tal que para todo $x, y \in F$,

$$|f(x) - f(y)| \le c|x - y|^{\alpha}.$$

Se dice que es bi-Hölder con exponente α si existen $c_1, c_2 > 0$ tales que

$$c_1 ||x - y||^{\alpha} ||f(x) - f(y)|| \le c_2 ||x - y||^{\alpha}$$

En particular, si $\alpha = 1$ se dice que la función es bilipschitz.

Proposición 1.6.6. Si $F \subset \mathbb{R}^n$ y $f : F \to \mathbb{R}^n$ es una aplicación Hölder continua con exponente $\alpha > 0$, entonces para cada $s \ge 0$

$$H^{\frac{s}{\alpha}}(f(F)) \le c^{\frac{s}{\alpha}} H^{s}(F).$$

Demostración. Si $\{U_i\}_{i\geq 1}$ es una δ -cubierta de F, entonces

$$|f(F \cap U_i)| \le c|F \cap U_i|^{\alpha} \le c|U_i|^{\alpha}.$$

De donde se deduce que $\{f(F \cap U_i)\}_{i \ge 1}$ es un ϵ -cubrimiento de f(F), considerando $\epsilon = c\delta^{\alpha}$.

De este modo, sumando sobre los elementos de la cubierta, tendremos

$$\sum |f(F \cap U_i)|^{\frac{s}{\alpha}} \le c^{\frac{s}{\alpha}} \sum |U_i|^s$$

Por lo tanto, tomando el ínfimo sobre todas las δ -cubiertas de F, se tiene

$$H^{\frac{s}{\alpha}}_{\epsilon}(f(F)) \le c^{\frac{s}{\alpha}} H^{s}_{\delta}(F).$$

Así, cuando $\delta \to 0$ también $\epsilon \to 0$, por lo tanto

$$H^{\frac{s}{\alpha}}(f(F)) \le c^{\frac{s}{\alpha}} H^{s}(F).$$

Un caso de gran importancia es cuando el exponente α de la condición de Hölder es 1, esto es,

$$|f(x) - f(y)| \le c|x - y| \qquad x, y \in F.$$

A una aplicación que satisface esta condición se le llama aplicación de Lipschitz, y

$$H^s(f(F)) \le c^s H^s(F).$$

Observemos que cualquier función diferenciable con derivada acotada en F es necesariamente Lipschitz, lo cual es consecuencia del teorema del valor medio. Por otro lado, si f es una isometría, es decir,

$$|f(x) - f(y)| = |x - y| \qquad x, y \in F,$$

entonces $H^{s}(f(F)) = H^{s}(F)$. En particular, las medidas de Hausdorff son invariantes bajo traslaciones, es decir, $H^{s}(F+z) = H^{s}(F)$, donde

$$F + z = \{x + z : x \in F\},$$

e invariante bajo rotaciones.

Definición de la dimensión Hausdorff 1.6.2.

De la definición de $H^s_{\delta}(F)$ tenemos que para un conjunto dado F y $0 < \delta < 1$, $H^s_{\delta}(F)$ es no decreciente con respecto a s. Así por definición de $H^s(F)$ es también no decreciente y tenemos la siguiente proposición.

Proposición 1.6.7. Si t > s, $0 < \delta < 1$ y $\{U_i\}$ es una δ -cubierta de F, entonces

$$H^t_{\delta}(F) \le \delta^{t-s} H^s_{\delta}(F).$$

Demostración. Debido a que $|U_i| \leq \delta$, entonces $|U_i|^{t-s} \leq \delta^{t-s}$ o equivalentemente $\delta^{s-t} \leq |U_i|^{s-t}$. Por lo anterior,

$$|U_i|^s = |U_i|^{s-t} |U_i|^t \ge \delta^{s-t} |U_i|^t.$$

Por lo tanto, $\sum_{i} \delta^{s-t} |U_i|^t = \delta^{s-t} \sum_{i} |U_i|^t \leq \sum_{i} |U_i|^s$. Esto implica que $H^s_{\delta}(F) \geq \delta^{s-t} H^t_{\delta}(F)$. Así, $H^t_{\delta}(F) \leq \delta^{t-s} H^s_{\delta}(F)$.

Nótese que si t < s y $H^s(F) > 0$, esto es, si $\lim_{\delta \to 0} H^s_{\delta}(F) > 0$ se tiene que

$$\lim_{\delta \to 0} H^s_{\delta}(F) \leq \lim_{\delta \to 0} \delta^{s-t} \lim_{\delta \to 0} H^t_{\delta}(F).$$

Por lo tanto, $H^t(F) = \infty$.

Análogamente, tenemos que si t > s y $H^{s}(F) < \infty$, entonces $H^{t}(F) = 0$. Esto nos muestra que existe un valor crítico s en el cual $H^s(F)$ salta de ∞ a 0. Este valor crítico recibe el nombre de la dimensión Hausdorff de F.

Definición 1.6.8. Sea $F \subset \mathbb{R}^n$. La dimensión Hausdorff de F es el número $\dim_H(F) =$ inf $\{s \ge 0 : H^s(F) = 0\} = \sup\{s \ge 0 : H^s(F) = \infty\}.$

De la definición anterior y adoptando que $\sup\{\emptyset\} = 0$, tenemos que

$$H^{s}(F) = \begin{cases} \infty & \text{si} \quad 0 \le s < \dim_{H}(F) \\ 0 & \text{si} \quad s > \dim_{H}(F). \end{cases}$$

Si $s = dim_H(F)$, entonces $H^s(F)$ puede ser igual a 0, ∞ o $0 < H^s(F) < \infty$.

A un conjunto de Borel que satisface la última condición se le llama s-conjunto. Gráficamente esto lo podemos ver en la figura 1.7.

Figura 1.7: Dimensión Hausdorff.

- **Corolario 1.6.9.** 1. Si f es una función Hölder- $\alpha \Rightarrow dim_H(f(X)) \leq \frac{1}{\alpha} dim_H(X)$. En particular si es Lipschitz, $dim_H(f(X)) \leq dim_H(X)$.
 - 2. Si f es una función bi-Hölder- $\alpha \Rightarrow dim_H(f(X)) = \frac{1}{\alpha} dim_H(X)$. En particular si es bi-Lipschitz, $dim_H(f(X)) = dim_H(X)$.

Demostración. 1. Si $s > dim_H(X)$ por la proposición 1.6.6

$$H^{\frac{s}{\alpha}}(f(X)) \le c^{\frac{s}{\alpha}} H^{s}(X) = 0$$

Como la dimensión es el ínfimo de los $s \ge 0$, tales que $H^s(X) = 0$ se sigue que $dim_H(f(X)) \le \frac{s}{\alpha}$ para toda $s > dim_H(X)$. Luego $dim_H(f(X)) \le \frac{1}{\alpha} dim_H(X)$.

2. Basta observar que siendo bi-Hölder-
 α la función f es inyectiva pues si

$$x \neq y \Rightarrow ||x - y|| > 0 \Rightarrow 0 < c_1 ||x - y||^{\alpha} \le ||f(x) - f(y)||.$$

Así, restringiéndose a la imagen, es biyectiva y tiene inversa $f^{-1}: f(X) \to X$. Sean $x, y \in f(X)$, es decir, existe $x_1, y_1 \in X$ tal que $x = f(x_1)$ y $y = f(y_1)$, siendo f Hölder tenemos que

 $c_1 ||x_1 - y_1||^{\alpha} \le ||f(x_1) - f(y_1)|| \le c_2 ||x_1 - y_1||^{\alpha}$, lo que implica que

 $c_1 \|f^{-1}(x) - f^{-1}(y)\|^{\alpha} \le \|x - y\| \le c_2 \|f^{-1}(x) - f^{-1}(y)\|^{\alpha} \text{ de donde se sigue que}$

$$\frac{\frac{1}{c_2^{\frac{1}{\alpha}}} \|x - y\|^{\frac{1}{\alpha}} \le \|f^{-1}(x) - f^{-1}(y)\| \le \frac{1}{c_1^{\frac{1}{\alpha}}} \|x - y\|^{\frac{1}{\alpha}}$$

y por lo tanto f^{-1} es Hölder- $\frac{1}{\alpha}$. Luego aplicando el inciso anterior a f tenemos que $dim_H(f(X)) \leq \frac{1}{\alpha} dim_H(X)$ y aplicando el inciso anterior a f^{-1} obtenemos que $dim_H(f^{-1}(X)) \leq \alpha dim_H(f(X))$. De estas dos desigualdades obtenemos que

$$\frac{1}{\alpha}dim_H(X) \le dim_H(f(X)) \le \frac{1}{\alpha}dim_H(X).$$

Ejemplo 1.6.10. Sea F una bola de radio r contenida en \mathbb{R}^n . Entonces,

$$H^n(F) = \frac{2^n}{C_n} \operatorname{Vol}_n(F) < \infty.$$

Por lo tanto la $dim_H(F) = n$, con $H^s(F) = \infty$ si s < n y $H^s(F) = 0$ si s > n.

Propiedades que cumple la dimensión Hausdorff.

- 1. *Monotonía.* Si $E \subseteq F$ entonces $dim_H(E) \leq dim_H(F)$.
- 2. **Estabilidad Contable.** Si $\{F_i\}_{i \ge 1}$ es una sucesión de subconjuntos de \mathbb{R}^n , entonces

$$dim_H\left(\bigcup_{i=1}^{\infty} F_i\right) = \sup_{1 \le i < \infty} \{dim_H(F_i)\}.$$

- 3. Dimensión de conjuntos contables. Si $F \subseteq \mathbb{R}^n$ es contable, entonces $dim_H(F) = 0.$
- 4. **Dimensión de conjuntos abiertos.** Si $F \subseteq \mathbb{R}^n$ es abierto, entonces $dim_H(F) = n$.

1.6.3. Algoritmo del valor propio

En esta sección se definen las particiones de Markov para los sistemas dinámicos conformes equipado con densidades invariantes, la cual nos permite describir un algoritmo para el cálculo de la dimensión de la densidad invariante en el caso expansivo. Este cálculo nos permite aproximar la dimensión Hausdorff de los conjuntos de Julia de polinomios hiperbólicos. Los resultados aquí presentados están basados en el trabajo de McMullen [McMI].

Definición 1.6.11. Un sistema dinámico conforme \mathcal{F} en $\widehat{\mathbb{C}}$ es una colección de aplicaciones conformes $f: U(f) \to \widehat{\mathbb{C}}$, definidas en un dominio $U(f) \subset \widehat{\mathbb{C}}$.

Definición 1.6.12. (Densidad \mathcal{F} -invariante) Dado un sistema dinámico conforme \mathcal{F} , una densidad \mathcal{F} -invariante de dimensión δ es una medida μ finita y positiva en S² tal que

$$\mu(f(E)) = \int_E |f'(x)|^{\delta} d\mu$$

siempre que $f|_E$ es inyectiva, $E \subset U(f)$ es un conjunto de Borel y $f \in \mathcal{F}$. Aquí la derivada se mide en la métrica esférica, dada por $\rho(x) = \frac{2|dx|}{1+|x|^2}$ en \mathbb{R}^2 .

Definición 1.6.13. Una partición de Markov para un sistema dinámico conforme \mathcal{F} con densidad \mathcal{F} -invariante μ , es una colección no vacía $P = \langle (P_i, f_i) \rangle$ de bloques compactos y arcoconexos $P_i \subset S^2$ y aplicaciones $f_i \in \mathcal{F}$ definida en P_i , tal que:

- 1. $f_i(P_i) \supset \bigcup_{i \mapsto j} P_j$, donde la relación $i \mapsto j$ significa que $\mu(f_i(P_i) \cap P_j) > 0$;
- 2. f_i es un homeomorfismo en una vecindad de $P_i \cap f_i^{-1}(P_j)$, cuando $i \mapsto j$;
- 3. $\mu(P_i) > 0;$

4.
$$\mu(P_i \cap P_j) = 0$$
 si $i \neq j$; y

5.
$$\mu(f_i(P_i)) = \mu(\bigcup_{i \mapsto j} P_j) = \sum_{i \mapsto j} \mu(P_j)$$

Las particiones siempre serán finitas.

Definición 1.6.14. Una partición de Markov es expansiva si existe una métrica suave conforme en S^2 y una constante ξ tal que

 $|f_i'(x)|_{\rho} > \xi > 1,$

donde $x \in P_i$ y $f_i(x) \in P_j$ para algún j.

El refinamiento de una partición P

$$\mathbf{R}(P) = \langle (\mathbf{R}_{ij}, f_i) : i \mapsto j \rangle,$$

es una nueva partición de Markov definida por

$$\mathbf{R}_{ij} = f_i^{-1}(P_j) \cap P_i.$$

En otras palabras, cada bloque de la partición P es subdividido y las aplicaciones son las mismas en cada bloque subdividido.

Proposición 1.6.15. Si P es una partición de Markov expansiva, entonces los bloques de $R^n(P)$ tienen diámetro de orden $O(\xi^{-n}), \xi > 1$.

Demostración. Ya que cada bloque P_j de P es arcoconexo, cualesquiera dos puntos en P_j pueden conectarse por un camino de manera suave uniformemente acotado de longitud L, contenido en la imagen de f_i cuando $i \to j$. Dado que la partición es expansiva, es decir, existe ξ tal que $|f'(x)| > \xi > 1 \quad \forall x \in P_i$ y $f_i(x) \in P_j$ para alguna j, entonces por el teorema del valor medio tenemos que

$$L = |f_i(x) - f_i(y)| = f'(c)|x - y| > \xi |x - y|.$$

Y así
$$|x - y| < \xi^{-1} |f_i(x) - f_i(y)| \Rightarrow |f_i^{-1}(f_i(x)) - f_i^{-1}(f_i(y))| < \xi^{-1} |f_i(x) - f_i(y)| = \xi^{-1}L$$

Por tanto, bajo f_i^{-1} , este camino se contrae por ξ^{-1} con respecto a la métrica ρ , así los puntos de R_{ij} están a lo más a una distancia $\xi^{-1}L$. Iterando, tendremos que los ρ -diámetros de los bloques de $R^n(P)$ es a lo más $\xi^{-n}L$. Como la métrica ρ es equivalente con la métrica esférica se termina la prueba.

A continuación presentamos el algoritmo que permite aproximar la dimensión δ de una densidad μ .

Supongamos que se tiene una partición de Markov $P = \langle (P_i, f_i) \rangle$ y una muestra de puntos $x_i \in P_i$. El algoritmo calcula una sucesión de aproximaciones $\alpha(\mathbf{R}^n(P))$ que tienden a δ procediendo de la siguiente manera:

- 1. Para cada $i \mapsto j$, calcule $y_{ij} \in P_i$ tal que $f_i(y_{ij}) = x_j$.
- 2. Calcule la matriz de transición

$$(MT)_{ij} = \begin{cases} |f'_i(y_{ij})|^{-1} & \text{si } i \mapsto j, \\ 0 & \text{en otro case} \end{cases}$$

3. Encuentre $\alpha(P) \ge 0$ tal que el radio espectral satisface

Donde
$$((MT)^{\alpha})_{ij} = T^{\alpha}_{ij}$$

- 4. La salida $\alpha(P)$ es una aproximación a δ .
- 5. Reemplace P por un refinamiento $\mathbf{R}(P)$, defina nuevamente una muestra de puntos $x_{ij} = y_{ij} \in \mathbf{R}_{ij}$ y regrese al paso 1.

Esperamos tener $\alpha(P) \approx \delta$. En efecto, la ley de transición, $\mu(f(E)) = \int_E |f'(x)|^{\delta} d\mu$, implica que $m_i = \mu(P_i)$ es un eigenvector aproximado para el vector $(MT)_{ij}^{\delta}$ con eigenvalor $\lambda = 1$, es decir,

$$\begin{split} m_i &= \mu(P_i) = \sum_{i \to j} \mu(f_i^{-1}(P_j)) = \sum \int_{P_j} |(f_i^{-1})'(x)|^{\delta} d\mu \approx \sum |f_i'(y_{ij})|^{-\delta} \mu(P_j) \\ &= \sum_j (MT)_{ij}^{\delta} m_j. \end{split}$$

Este argumento se usa para probar la convergencia del algoritmo en el caso expansivo. **Teorema 1.6.16.** Sea P una partición de Markov expansiva para un sistema dinámico conforme \mathcal{F} con una densidad invariante μ de dimensión δ , entonces

$$\alpha(R^n(P)) \to \delta$$

cuando $n \rightarrow \infty$

Demostración. Primero supongamos que la partición P es expansiva en la métrica esférica. Sea $P = \langle (P_i, f_i) \rangle$ y $P_{ij} = P_i \cap f_i^{-1}(P_j)$. Definimos S_{ij} y U_{ij} como el mínimo y el máximo, respectivamente, de $|f'_i(x)|^{-1}$ sobre P_{ij} cuando $i \to j$ y establezcamos $S_{ij} = U_{ij} = 0$ en otro caso, entonces por la expansión tenemos que

$$S_{ij} \le (MT)_{ij} \le U_{ij} < \xi^{-1} < 1$$

para alguna constante ξ . En particular, $\lambda((MT)^{\alpha})$ es una función estrictamente decreciente con respecto a α , así existe una única solución para $\lambda((MT)^{\alpha}) = 1$. Se afirma que

$$S^{\delta}m)_i \le m_i (U^{\delta}m)_i$$

donde $m_i = \mu(P_i)$. En efecto,

$$m_{i} = \mu(P_{i}) = \sum_{i \to j} \int_{P_{j}} |(f_{i}^{-1})'(x)|^{\delta} d\mu \ge \sum_{i \to j} S_{ij}^{\delta} \mu(P_{j}) = (S^{\delta}m)_{i}.$$

De manera similar para U. Por tanto,

$$\lambda(S_{ij}^{\delta}) \leq 1 \leq \lambda(U_{ij}^{\delta})$$

por la teoría de matrices no negativas [G].

Ya que f es de clase C^2 , tenemos que

$$U_{ij}/S_{ij} = 1 + O(max \ diam \ P_i).$$

Escogemos una $\beta = O(\max \operatorname{diam} P_i)$ tal que $\xi^{\beta} S^{\delta} \ge U^{\delta}$. Entonces,

$$(MT)^{\delta-\beta} = (MT)^{\delta} (MT)^{-\beta} \ge S^{\delta} \xi^{\beta} \ge U^{\delta} \Rightarrow \lambda((MT)^{\delta-\beta}) \ge \lambda(U^{\delta}) \ge 1.$$

De igual manera $(MT)^{\delta}(MT)^{\beta} \leq U^{\delta}\xi^{-\beta} \leq S^{\delta} \leq 1$ por tanto,

$$\lambda((MT)^{\delta+\beta}) \le \lambda(S^{\delta}) \le 1 \quad \text{y} \quad \lambda((MT)^{\delta+\beta}) \le 1 \le \lambda((MT)^{\delta-\beta})1.$$

Por continuidad, la solución de $\lambda((MT)^{\alpha})=1$ se encuentra entre estos dos exponentes, así

$$|\alpha(P) - \delta| \le 2\beta = O(\max \ diam \ P_i)$$

Ya sabemos que los bloques de $R^n(P)$ tienen diámetro $O(\xi^{-n})$, lo cual implica que

$$|\alpha(R^n(P)) - \delta| = O(\xi^{-n}).$$

Para el caso general, en el que tenemos una métrica expansiva $\rho \neq \sigma$, note que el argumento anterior funciona si reemplazamos MT por

$$\overline{(MT)}_{ij} = |f'_i(y_{ij})|_{\rho}^{-1} = \frac{\rho(y_{ij})\sigma(x_j)}{\sigma(y_{ij})\rho(x_j)}(MT)_{ij}.$$

Pero para una partición suficientemente fina, $y_{ij} \approx x_i$ y por lo tanto, $\overline{MT} \approx N(MT)N^{-1}$ por la matriz diagonal $N \operatorname{con} N_{ii} = \frac{\rho(x_i)}{\sigma(x_i)}$. Ya que $\lambda(\overline{T}) = \lambda(N(MT)N^{-1})$, obtenemos una convergencia rápida exponencial a δ en el caso general.

En esta parte construiremos, vía ángulos externos, una partición de Markov para polinomios expansivos. Recordemos que un polinomio es expansivo si su conjunto de Julia no contiene puntos críticos o puntos parabólicos.

Definición 1.6.17. Una aplicación racional f es geométricamente finita si todo punto crítico que pertenece a J_f es pre-periódico.

Teorema 1.6.18. El conjunto de Julia de una aplicación f geométricamente finita lleva una única densidad invariante μ de dimensión $\delta = \dim_H(J_f)$ y de medida total uno. Además, μ tiene soporte en el conjunto de Julia radial.

Sea f un polinomio de grado $d \ge 2$, por el teorema de Böttcher existe Φ_f definida en una vecindad del infinito U_f tal que

$$\Phi_f(z^d) = f(\Phi_f(z)). \tag{1.6}$$

Además, si K_f es conexo, la conjugación se extiende a $\mathbb{C} \setminus K_f$, es decir,

$$\Phi_f : (\widehat{\mathbb{C}} - \overline{\Delta}) \to (\widehat{\mathbb{C}} - K(f)),$$
 véase la figura 1.8.

Además, si f es geométricamente finita, J_f es localmente conexo y por el teorema de Carathéodory, Φ_f se extiende continuamente a la frontera y se obtiene una aplicación

$$\phi_f: S^1 \to J_f$$

que semiconjuga la dinámica de f en J_f a la multiplicación por d. El punto $\phi_f(e^{2\pi i\theta}) \in J_f$ tiene ángulo externo θ , [CG].

Los polinomios de Chebyshev $T_d(z)$ son definidos por $T_d(cos(\theta)) = cos(d\theta)$; por ejemplo $T_2(z) = 2z^2 - 1$. El mapeo $T_d(z)$ es semiconjugado con la función $z \to z^d$ bajo $\pi(z) = (z + z^{-1})/2$; esto es, $T_d(\pi(z)) = \pi(z^d)$. Así el conjunto de Julia de T_d es $\pi(S^1) = [-1, 1]$.

Notación: $A \simeq B$ significa que $\frac{A}{C} < B < CB$ para alguna constante C.

Teorema 1.6.19. Sea f(z) un polinomio geométricamente finito con conjunto de Julia conexo y densidad canónica μ , entonces o bien:

- 1. $\mu(\phi_f(I) \cap \phi_f(J)) = 0$ para todos los intervalos disjuntos $I, J \subset S^1$; o
- 2. f(z) es conformemente conjugado a los polinomios $T_d(z)$ de Chebyshev.

Teorema 1.6.20. Sea f(z) un polinomio expansivo con conjunto de Julia conexo. Entonces $P = (\phi_f(I_i), f)$ es una partición de Markov expansiva para (f, μ) donde

$$I_i = \left[\frac{i-1}{d}, \frac{i}{d}\right]$$

bajo la identificación de $S^1 = \mathbb{R} \setminus \mathbb{Z}$ y μ es una densidad para f.

Demostración. Verificaremos que se cumplen los axiomas de una partición de Markov.

(1). Se
a $P_i=\phi_f(I_i),$ la semiconjugación $\phi_f(z^d)=f(\phi_f(z))$ implica qu
e $f(P_i)=\bigcup P_i=J_f.$

(2). Por la expansión, f es un homeomorfismo local cerca de J_f . Tenemos así que

$$P_{ij} = P_i \cap f^{-1}(P_j) = \phi_f(I_{ij})$$

para un arco $I_{ij} \subset S^1$ de longitud $\frac{2\pi}{d^2}$; ya que z^d es inyectiva en I_{ij} , f es un homeomorfismo en una vecindad de P_{ij} .

(3),(4) y (5). Por el teorema 1.6.19, se tiene que I_i es un intervalo y ϕ_i es continua tenemos que $\mu(P_i) > 0$ y $\mu(P_i \cap P_j) = 0$ para $i \neq j$; por lo tanto, $\mu(f(P_i)) = \mu(J(f)) = \sum_j \mu(f(P_j))$.

Finalmente, la expansión de f implica que hay una métrica conforme tal que $|f'|_{\rho}$ en J_f [McMI,Teo 3.13]. Así P es una partición de Markov expansiva.

Corolario 1.6.21. El algoritmo del valor propio aplicado a P calcula la dimensión Hausdorff de los conjuntos de Julia.

Capítulo 2

Dimensión Hausdorff de conjuntos de Julia de polinomios cuadráticos

En este capítulo se construyen las herramientas para la implementación del algoritmo del valor propio en la familia $f_c(z) = z^2 + c$ cuando f_c es hiperbólico.

2.1. Arcos regulares

En esta sección construimos arcos regulados en los conjuntos de Julia de la familia $f_c(z) = z^2 + c$ para el caso en que el punto crítico es periódico o atraído por una órbita periódica.

Sea $f_c(z) = z^2 + c$. Este polinomio tiene un único punto crítico que es z = 0 y cuando la órbita de éste es acotada J_c es conexo.

El polinomio f_c tiene dos puntos fijos, $\alpha_c \neq \beta_c$, de los cuales solo uno puede ser atractor. Denotemos por α_c al punto fijo de f_c que para c pequeños es atractor y β_c al punto fijo de f_c que siempre es repulsor y por lo tanto esta en J_c .

al punto fijo de f_c que siempre es repulsor y por lo tanto esta en J_c . Observe que $\alpha_c = \frac{1}{2} - \frac{1}{2}\sqrt{1-4c}$ y $\beta_c = \frac{1}{2} + \frac{1}{2}\sqrt{1-4c}$. Además, β_c tiene ángulo externo cero.

Apartir de ahora, supongamos que f_c es hiperbólico. Si J_c es conexo, el teorema 1.6.20 garantiza la existencia de una partición de Markov expansiva $P = \langle (P_i, f_c) \rangle$ con $P_1 = \phi_c(P'_1)$ y $P_2 = \phi_c(P'_2)$, donde $P'_1 = [0, \frac{1}{2}]$, $P'_2 = [\frac{1}{2}, 1]$ y ϕ_c es una semiconjugación entre la función doblamiento y $f_c|_{J_c}$. Para el caso en que J_c es disconexo, el mismo algoritmo funciona, sólo que en este caso la partición de Markov se construye usando los equipotenciales en la cuenca de atracción del infinito, [McMI]. Sea $M' = \bigcup_{i \in I} W_i$, donde W_i es una componente hiperbólica del conjunto de Mandelbrot, para toda $i \in I$ y en particular denotemos por W_0 a la componente principal del conjunto de Mandelbrot. Como f_c es hiperbólico existe $U \subset Int(K_c)$, componente de Fatou periódica, la cual contiene un punto periódico atractor. Definimos el centro de U como el punto periódico atractor o super-atractor z_U de U. Por el teorema de Sullivan toda componente $V \subset Int(K_c)$ es eventualmente periódica, es decir, existe m tal que $f_c^m(V) = U$, por lo que definimos el centro de V como $f_c^{-m}(z_U) \in V$, [CG, B]. Sea $c \in W_i$ y U la componente periódica de periodo k que contiene al crítico. El conjunto U es invariante bajo f_c^k y $f_c^k|_U$ es un cubriente ramificado de grado dos. Si el punto crítico de f_c no es periódico, por el teorema de Koenigs existe un biholomorfismo $\varphi_U : U \to \mathbb{D}$ que envía el centro de U en 0 y conjuga analíticamente f_c^k con λz . Además esta conjugación se extiende continuamente a la frontera de U.

Sea $z_0 = f_c^{-k}(z_U) \in U$ y $z_0 \neq z_U$, se define el arco regular que une a z_U con z_0 , como $\varphi_U^{-1}(\Upsilon([0,1]))$, donde $\Upsilon([0,1])$ es el segmento de recta que une a $\varphi_U(z_0)$ con $\varphi_U(z_U)$ en \mathbb{D} denotado por $[z_0, z_U]_U$. Para $z_1 \in \{f_c^{-k}(z_0)\} \cap U$, dado el arco $[z_0, z_U]_U$ definimos el arco regular que une a z_0 con z_1 como la curva $[z_1, z_0]_U$ en U tal que $f_c^k([z_1, z_0]_U) = [z_0, z_U]_U$. De manera general, si $z_{n+1} \in \{f_c^{-k}(z_n)\} \cap U$, definimos el arco que une a z_{n+1} con z_n como la curva $[z_{n+1}, z_n]_U$ en U tal que $f_c^k([z_{n+1}, z_n]_U) = [z_n, z_{n-1}]_U$.

Si el punto crítico de f_c es periódico, por el teorema de Böttcher existe un biholomorfismo $\Phi_U : U \to \mathbb{D}$ que envía el centro de U en 0 y conjuga f_c^k con z^2 . Además esta conjugación se extiende continuamente a la frontera de U.

Sea $z'_U \in U$ el punto fijo repulsor para f_c^k y $z_0 = f_c^{-k}(z'_U) \in U$ con $z_0 \neq z'_U$. Se define el arco regular, que une a z_0 con z'_U , como la curva $\Phi_U^{-1}(\Upsilon_1([0,1]))$, donde $\Upsilon_1([0,1])$ es el segmento de recta que pasa por cero y une a $\Phi_U(z'_U)$ con $\Phi_U(z_0)$ en $\overline{\mathbb{D}}$ el cual se denotará por $[z_0, z'_U]_{\overline{U}}$. Así, para $z_1 \in \{f_c^{-k}(z_0)\} \cap U$, dado el arco $[z_0, z'_U]_{\overline{U}}$ definimos el arco regular que une a z_0 con z_1 en K_c como la curva $[z_1, z_0]_{K_c}$ tal que $f_c^k([z_1, z_0]_{\overline{U}}) = [z_0, z'_U]_{\overline{U}}$. De manera general, si $z_{n+1} \in \{f_c^{-k}(z_n)\}$, dado el arco $[z_n, z_{n-1}] \in K_c$, definimos el arco regular que une a z_{n+1} con z_n como la curva $[z_{n+1}, z_n]_{K_c}$ tal que $f_c^k([z_{n+1}, z_n]_{K_c}) = [z_n, z_{n-1}]_{K_c}$.

Para ambos casos definimos el arco regular $[z_k, z_{k+j}]_{K_c} = \bigcup_{i=0}^{j-1} [z_{k+i}, z_{k+i+1}]_{K_c}$.

2.2. Construcción de la curva l

Para la construcción de la matriz de transición vamos a construir una curva, Γ_c , que separa al plano en dos conjuntos disjuntos y está formada por la unión del rayo externo a $-\beta_c$, el rayo externo a β_c y una curva Γ_{K_c} que conecta a $-\beta_c$ con β_c dentro de K_c . Como K_c es localmente conexo la curva Γ_{K_c} existe y en general no es única, para su construcción será necesario dar algunas definiciones y en particular usaremos el siguiente resultado de Yin, *et al*, [TY, P].

Teorema 2.2.1. Sean f un polinomio, C_f su conjunto post-crítico, D_R la unión de los dominios de rotación periódicos de f y $\gamma : [0, \infty) \to \widehat{\mathbb{C}}$ una curva tal que $f(\gamma(t)) = \gamma(t-1)$ para toda $t \ge 1$. Si $\gamma([0,1]) \cap (\overline{C_f \cup D_R}) = \emptyset$, entonces $\gamma(t)$ converge a un punto fijo de f con multiplicador λ con $|\lambda| > 1$ o $|\lambda| = 1$.

2.2.1. Caso $c \in W_0$

Si $c \in W_0$ se construye la curva Γ_{K_c} de la siguiente manera: sea $z_U = \alpha_c$ y $z_0 = -\alpha_c$. Dado z_i se elige z_{i+1} como la imagen inversa de z_i bajo f_c mas cercana a β_c . Sea $\{z_n\}_{n\geq 0}$ la sucesión anterior, construimos una curva uniendo z_n con z_{n+1} mediante arcos regulados para $n \geq 0$. Estos arcos se parametrizan con funciones γ_n de tal
manera que:

$$\gamma_n([-(n+1), -n]) = [z_{n+1}, z_n]_{K_c}, \quad \gamma_n(-(n+1)) = z_{n+1}$$

y $\gamma_n(-n) = z_n \forall n \ge 0.$

Sea \mathcal{C}_c la clausura del conjunto post-crítico de f_c . Se define la curva

$$\gamma_c: (-\infty, 0] \to \mathbb{C} \setminus \mathcal{C}_c$$

como $\gamma_n(t)$ si $t \in [-(n+1), -n]$ con $n \ge 0$. Por la construcción de los arcos regulados $[z_{n+1}, z_n]_{K_c}$ se tiene que si $t \leq -1$, entonces

$$f_c(\gamma_c(t)) = f_c(\gamma_n(t)) = \gamma_{n-1}(t) = \gamma_c(t+1).$$

Por la Proposicion 2.2.1 tenemos el siguiente resultado.

Proposición 2.2.2. La sucesión $\{z_n\}_{n\geq 0}$ definida anteriormente converge al punto fijo repulsor β_c y la cerradura de la imagen de la curva γ_c conecta a $-\alpha_c$ con β_c .

Sea
$$\Gamma_c^1 = \gamma_c([-\infty, 0])$$
 y $\Gamma_c^2 = -\Gamma_c^1$.

Observación 2.2.3. Γ_c^2 conecta a α_c con $-\beta_c$.

Definimos $\Gamma_{K_c} = \Gamma_c^2 \cup [-\alpha_c, \alpha_c]_{K_c} \cup \Gamma_c^1$, a Γ_{K_c} se le llama espina dorsal de K_c . Denotemos por $W_{\frac{p_0}{c}}$ a la componente hiperbólica que se bifurca de W_0 con ángulo CTIC T interno $\frac{p_0}{q_0}$ y $(p_0, q_0) = 1$.

Caso $c \in W_{\frac{p_0}{q_0}}$ 2.2.2.

Observe que para los parámetros $c \in W_{\frac{p_0}{q}}, f_c$ tiene una órbita periódica atractora de periodo q_0 . Si $c \in W_{\frac{p_0}{q_0}}$, entonces la curva Γ_{K_c} , se construye de la siguiente manera: como $c \in W_{\frac{p_0}{q_0}}$, entonces vía una renormalización se obtiene que $f_c^{q_0}$ es híbridamente conjugada a $f_{\hat{c}}$ para alguna $\hat{c} \in W_0$. Denotemos por $K_c^0 \subset K_c$ al conjunto de Julia lleno obtenido por esta renormalización y β_c^0 , α_c^0 a los puntos fijos de $f_c^{q_0}$ que pertenecen a K_c^0 . Como la dinámica de $f_c^{q_0}$ en K_c^0 es conjugada a la dinámica de $f_{\hat{c}}$ en $K_{\hat{c}}$, con $\hat{c} \in W_0$, podemos construir el arco $\Gamma_{K_c^0} = [-\beta_c^0, \beta_c^0]_{K_c^0}$, usando el procedimiento dado para los parametros en la componente principal W_0 . Notemos que $\beta_c^0 = \alpha_c$ y por lo tanto $[-\beta_c^0, \beta_c^0]_{K_c^0} = [-\alpha_c, \alpha_c]$. Tomemos $z_0 = -\alpha_c$, dado z_i se elige z_{i+1} como la imagen inversa de z_i bajo f_c mas cercana a β_c . Para esta sucesión de imagenes inversas de $-\alpha_c$, usando como arco inicial $\Gamma_{K_c^0}$, se construyen los arcos regulados que unen a cada uno de los puntos de esa sucesión. Estos arcos regulados se parametrizan con funciones γ_n con $n \ge 0$ de tal manera que: $\gamma_n([-(n+1), -n]) = [z_{n+1}, z_n]_{K_c}$. Note que $\gamma_n(-(n+1)) = z_{n+1} \ge \gamma_n(-n) = z_n$ $\forall \ n \ge 0.$

Sea \mathcal{C}_c la clausura del conjunto post-crítico de f_c . Se define la curva

$$\gamma_c: (-\infty, 0] \to \mathbb{C} \setminus \mathcal{C}_c$$

como $\gamma_n(t)$ si $t \in [-(n+1), -n]$ con $n \ge 0$. Por la construcción de los arcos regulados se tiene que si $t \le -1$, entonces

$$f_c(\gamma_c(t)) = f_c(\gamma_n(t)) = \gamma_{n-1}(t) = \gamma_c(t+1).$$

Por la proposicion 2.2.1 tenemos el siguiente resultado.

Proposición 2.2.4. La sucesión $\{z_n\}_{n\geq 0}$ definida anteriormente converge al punto fijo repulsor β_c y la cerradura de la imagen de la curva γ_c conecta a $-\alpha_c \operatorname{con} \beta_c$.

Sea
$$\Gamma_c^1 = \gamma_c([-\infty, 0])$$
 y $\Gamma_c^2 = -\Gamma_c^1$.

Observación 2.2.5. Γ_c^2 conecta a α_c con $-\beta_c$.

Definitions
$$\Gamma_{K_c} = \Gamma_c^2 \cup [-\alpha_c, \alpha_c]_{K_c} \cup \Gamma_c^1.$$

2.2.3. Caso $c \in W_{\frac{p_0}{q_0}...\frac{p_n}{q_n}}$

Denotemos por $W_{\frac{p_0}{q_0}\dots\frac{p_n}{q_n}}$ a la componente hiperbólica que se bifurca de $W_{\frac{p_0}{q_0}\dots\frac{p_{n-1}}{q_{n-1}}}$ con ángulo interno $\frac{p_n}{q_n}$ donde $(p_k, q_k) = 1$ para todo $k = 0, \dots, n$. Note que si $c \in W_{\frac{p_0}{q_0}\dots\frac{p_n}{q_n}}$, f_c tiene una órbita periódica atractora de periodo $q_0 \cdots q_n$.

Observación 2.2.6. Si c_0 es el centro de $W_{\frac{p_0}{q_0}\dots\frac{p_{k-1}}{q_{k-1}}}$ y $c \in W_{\frac{p_0}{q_0}\dots\frac{p_k}{q_k}}$, entonces $c = c_0 \perp \hat{c}$ para alguna $\hat{c} \in W_{\frac{p_k}{q_k}}$, donde \perp , denota la modulación definida por Douady en [D].

Observación 2.2.7. Si $c \in W_{\frac{p_0}{q_0}\dots\frac{p_n}{q_n}}$, entonces vía una renormalización se obtiene que $f_c^{q_0\dots q_n}$ es híbridamente conjugada a $f_{c_{n+1}}$ para alguna $c_{n+1} \in W_0$. De igual manera vía una renormalización se obtiene que $f_c^{q_0\dots q_{n-1}}$ es híbridamente conjugada a f_{c_n} para alguna $c_n \in W_{\frac{p_n}{q_n}}$. En general, renormalizando se obtiene que $f_c^{q_0\dots q_k}$ es híbridamente conjugada a $f_{c_{k+1}}$ para alguna $c_{k+1} \in W_{\frac{p_n}{q_n}\dots\frac{p_{k+1}}{q_{k+1}}}$ para $k = 0, \dots, n-1$, [DH1, McM].

Denotemos por K_c^k al conjunto de Julia lleno obtenido por la renormalización de $f_c^{q_0 \cdots q_k}$ y por β_c^k, α_c^k los puntos fijos de $f_c^{q_0 \cdots q_k}$ que pertenecen a K_c^k para $k = 0, \dots, n$.

Sea $M_0 = \bigcup_{k \ge 0} W_{\frac{p_0}{q_0} \dots \frac{p_k}{q_k}}$ y $c \in M_0$, entonces $c \in W_{\frac{p_0}{q_0} \dots \frac{p_n}{q_n}}$. Para construir la curva Γ_c vamos a construir recursivamente las curvas $\Gamma_{K_c^k}$ contenida en los conjuntos de Julia lleno K_c^k , de las funciones polinomiales cuadráticas $f_c^{q_0 \dots q_k}$ con $k = 0, \dots, n$. Estas curvas van a satisfacer la cadena de contenciones

$$\Gamma_{K_c^n} \subset \Gamma_{K_c^{n-1}} \subset \Gamma_{K_c^{n-2}} \subset \cdots \subset \Gamma_{K_c^0}$$

Para construir la curva $\Gamma_{K_c^n}$ tomemos la renormalización obtenida por $f^{q_0 \cdots q_n}$ que es hibridamente conjugada a $f_{\widehat{c}}$ para alguna $\widehat{c} \in W_0$. Como la dinámica de $f^{q_0 \cdots q_n}$ en K_c^n es conjugada a la dinámica de $f_{\widehat{c}}$ en $K_{\widehat{c}}$, podemos construir la curva $\Gamma_{K_c^n}$ de K_c^n de la misma forma que se hace para el parametro $\hat{c} \in W_0$. Para construir la curva $\Gamma_{K_c^{n-1}}$ tomemos la renormalización obtenida por $f^{q_0 \cdots q_{n-1}}$ que es hibridamente conjugada a $f_{\hat{c}}$ para alguna $\hat{c} \in W_{\frac{pn}{q_n}}$. Como la dinámica de $f^{q_0 \cdots q_{n-1}}$ en K_c^{n-1} es conjugada a la dinámica de $f_{\hat{c}}$ en $K_{\hat{c}}$, para construir la curva $\Gamma_{K_c^{n-1}}$ de K_c^{n-1} partimos de la curva $\Gamma_{K_c^n}$ y aplicamos la construcción realizada para el parametro $\hat{c} \in W_{\frac{pn}{q_n}}$. Siguiendo este proceso construimos, apartir de la curva $\Gamma_{K_c^{n-k}}$, la siguiente curva $\Gamma_{K_c^{n-(k+1)}}$, para ello usamos la renormalización correspondiente a la función $f^{q_0 \cdots q_{n-(k+1)}}$. Así llegamos a la curva $\Gamma_{K_c^0}$ la cual conecta a $-\beta_c^0 \operatorname{con} \beta_c^0$. Note que $\beta_c^0 = \alpha_c$. Con las curvas antes definidas vamos a construir la curva final Γ_{K_c} . Tomemos $z_0 = -\alpha_c$, dado z_i se elige z_{i+1} como la imagen inversa de z_i bajo f_c mas cercana a β_c . Para esta sucesión de imagenes inversas de esa sucesión. Estos arcos regulados se parametrizan con funciones $\gamma_n \operatorname{con} n \ge 0$ de tal manera que: $\gamma_n([-(n+1), -n]) = [z_{n+1}, z_n]_{K_c}$. Note que $\gamma_n(-(n+1)) = z_{n+1}$ y $\gamma_n(-n) = z_n \forall n \ge 0$.

Sea C_c la clausura del conjunto post-crítico de f_c . Se define la curva

$$\gamma_c: (-\infty, 0] \to \mathbb{C} \setminus \mathcal{C}_c$$

como $\gamma_n(t)$ si $t \in [-(n+1), -n]$ con $n \ge 0$. Por la construcción de los arcos regulados se tiene que si $t \le -1$, entonces

$$f_c(\gamma_c(t)) = f_c(\gamma_n(t)) = \gamma_{n-1}(t) = \gamma_c(t+1).$$

Por la Proposicion 2.2.1 tenemos el siguiente resultado.

Proposición 2.2.8. La sucesión $\{z_n\}_{n\geq 0}$ definida anteriormente converge al punto fijo repulsor β_c y la cerradura de la imagen de la curva γ_c conecta a $-\alpha_c \operatorname{con} \beta_c$.

Sea
$$\Gamma_c^1 = \gamma_c([-\infty, 0]) \text{ y } \Gamma_c^2 = -\Gamma_c^1.$$

Observación 2.2.9. Γ_c^2 conecta a α_c con $-\beta_c$.

Definimos $\Gamma_{K_c} = \Gamma_c^2 \cup [-\alpha_c, \alpha_c]_{K_c} \cup \Gamma_c^1$. Por construcción, en todos los casos se tiene el siguiente resultado.

Proposición 2.2.10. Sea $D = J_c \setminus \Gamma_c$. La curva Γ_c divide a \mathcal{D} en dos sectores,

$$A_0 = \{z \in J_c : \text{el argumento externo } \theta \text{ cumple } 0 < \theta < \frac{1}{2}\},$$

$$A_1 = \{z \in J_c : \text{el argumento externo } \theta \text{ cumple } \frac{1}{2} < \theta < 1\}.$$

2.3. Descripción de la matriz de transición

Para aplicar el algoritmo del valor propio, tomemos como partición inicial la que nos proporciona el teorema 1.6.20 y elegimos una muestra de puntos de tal manera que haya uno en cada elemento de la partición. Se toma $\{x_1, x_2\} = \{\phi_c(\frac{1}{4}), \phi_c(\frac{3}{4})\} =$

 $f_c^{-1}(-\beta_c)$ donde $\beta_c = \phi_c(0)$ es el punto fijo de f_c con ángulo externo cero y $-\beta_c \in f^{-1}(\beta_c)$. Así, $f^2(x_i) = \beta_c$ y los puntos muestra para todos los refinamientos de P se encuentran en la órbita inversa de β_c . Note que si $\overline{y_{ij}} \in S^1 = \mathbb{R} \setminus \mathbb{Z}$, entonces $\phi_c(\overline{y_{ij}}) = y_{ij} \in J_c$. De $\{x_1, x_2\}$ se obtiene y_{11}, y_{21} que son preimágenes de x_1 y y_{12}, y_{22} que son preimagenes de x_2 . Donde y_{11} y y_{12} se encuentran en P_1 en la región A_0 y y_{21} y y_{22} están en P_2 que se encuentra en la región A_1 , véase la figura 2.1. Con esta partición inicial construimos una matriz de transición preliminar, PT_1 y posteriormente se obtiene MT_1 .

$$PT_{1} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}, \quad MT_{1} = \begin{pmatrix} \hat{y}_{11} & \hat{y}_{12} \\ \hat{y}_{21} & \hat{y}_{22} \end{pmatrix},$$

donde $\hat{y}_{ij} = |f'_{c}(y_{ij})|^{-1}.$

Para una primera aproximación a la dimensión Hausdorff, $\dim_H(J_c)$, se resuelve la ecuación $\lambda((\mathbf{MT_1})^{\alpha}) = 1$, para la cual se usa el método de la potencia normalizado que se explica en el apéndice A. Para obtener una mejor aproximación, se realiza un refinamiento a la partición P, $R(P) = \langle (R_{ij}, f_i) : i \rightarrow j \rangle = [P_1, P_2, P_3, P_4]$, donde $P_k = \phi_c([\frac{k-1}{4}, \frac{k}{4}])$ con k = 1, 2, 3, 4. Note que en cada P_k existe una preimagen y_{ij} , las cuales se ordenan en forma ascendente de acuerdo al argumento externo que le corresponde, de tal manera que estos serán los nuevos puntos muestra $\{x_1, x_2, x_3, x_4\} = \{\phi_c(\frac{1}{8}), \phi_c(\frac{5}{8}), \phi_c(\frac{7}{8})\}$, véase el algoritmo B.1.2. De estos nuevos puntos muestra se obtienen ocho preimágenes: y_{11} , y_{31} que son preimágenes de x_1 ; y_{12} , y_{32} que son preimágenes de x_2 ; y_{23} , y_{43} preimágenes de x_3 ; y y_{24} , y_{44} que son preimágenes de x_4 . Observe que y_{11} y y_{12} están en P_1 en la región A_0 , y_{31} y y_{32} están en P_3 en la región A_1 y y_{43} y y_{44} están en P_4 en la región A_1 , véase figura 2.2. Con este refinamiento se obtienen

 PT_2 y posteriormente, de igual manera que en el paso anterior, se obtiene MT_2 .

$$\boldsymbol{PT_2} = \begin{pmatrix} y_{11} & y_{12} & 0 & 0 \\ 0 & 0 & y_{23} & y_{24} \\ y_{31} & y_{32} & 0 & 0 \\ 0 & 0 & y_{43} & y_{44} \end{pmatrix}, \quad \boldsymbol{MT_2} = \begin{pmatrix} \widehat{y}_{11} & \widehat{y}_{12} & 0 & 0 \\ 0 & 0 & \widehat{y}_{23} & \widehat{y}_{24} \\ \widehat{y}_{31} & \widehat{y}_{32} & 0 & 0 \\ 0 & 0 & \widehat{y}_{43} & \widehat{y}_{44} \end{pmatrix}.$$

Donde $\hat{y}_{ij} = |f'_c(y_{ij})|^{-1}$. La aproximación a la dimensión Hausdorff se obtiene re-

solviendo la ecuación $\lambda((\boldsymbol{MT_2})^{\alpha}) = 1$, usando el método de la potencia normalizado. Para mejorar la aproximación se realiza un refinamiento a la partición y los y_{ij} pasan a ser los puntos muestra. De manera general, si se toma una partición uniforme y se elige una lista de puntos muestra $\{x_n\}$ ordenados con respecto a su argumento externo, la matriz de transición preliminar $\boldsymbol{PT_n} = [y_{ij}]$ se construye como sigue: Los y_{ij} están colocados de tal manera que el índice i indica que está en la partición P_i y el índice j indica que es preimagen de x_j para toda $j, i = 1, ..., 2^n$. La matriz de transición general es $\boldsymbol{MT_n} = [\hat{y}_{ij}]$ y se obtiene evaluando el módulo de $f'_c(y_{ij})$ y sacando su inverso. Observe que por cada x_k para $k = 1, ..., 2^n$, se tiene que si una preimagen está en el bloque P_m con $m = 1, ..., 2^{n-2}$, entonces la otra preimagen está en $P_{2^{n-2}+m}$, además de que $P_m \subset A_0, P_{2^{n-2}+m} \subset A_1$ con $m = 1, ..., 2^{n-2}$. Esto indica que una preimagen de x_k siempre está en la región A_0 y la otra en A_1 .

$$\boldsymbol{PT_n} = \begin{pmatrix} y_{11} & y_{12} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & y_{23} & y_{24} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & y_{(2^{n-1})(2^n-1)} & y_{(2^{n-1})(2^n)} \\ y_{(2^{n-1}+1)1} & y_{(2^{n-1}+1)2} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & y_{(2^{n-1}+2)3} & y_{(2^{n-1}+2)4} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & y_{(2^n)(2^n-1)} & y_{2^n2^n} \end{pmatrix}$$

Dado que la dimensión de la matriz crece exponencialmente, la memoria de una computadora convencional es insuficiente para calcular el radio espectral en refinamientos grandes (de un orden mayor que 15). Por lo tanto será necesario hacer un reacomodo de la matriz MT_n que permita tanto bajar su dimensión como calcular su radio espectral.

La matriz MT_n de $2^n \times 2^n$ se transforma en una matriz MT'_n de $2^n \times 2$, para la cual todas sus entradas son diferentes de cero, véase (2.1).

$$\boldsymbol{MT_{n}'} = \begin{pmatrix} \hat{y}_{11} & \hat{y}_{12} \\ \hat{y}_{23} & \hat{y}_{24} \\ \vdots & \vdots \\ \hat{y}_{(2^{n-1})(2^{n}-1)} & \hat{y}_{(2^{n-1})(2^{n})} \\ \hat{y}_{(2^{n-1}+1)1} & \hat{y}_{(2^{n-1}+1)2} \\ \hat{y}_{(2^{n-1}+2)3} & \hat{y}_{(2^{n-1}+2)4} \\ \vdots & \vdots \\ \hat{y}_{(2^{n})(2^{n}-1)} & \hat{y}_{2^{n}2^{n}} \end{pmatrix}$$
(2.1)

Dadas $A \in \mathcal{M}_{2^n \times 2}$ y $X \in \mathcal{M}_{2^n \times 1}$, se define $C = A \star X$ de tal forma que

1. $c_{i1} = a_{i1} \cdot x_{(2i-1)1} + a_{i2} \cdot x_{(2i)1}$, para $i = 1, ..., 2^{n-1}$; 2. $c_{(2^{n-1}+i)1} = a_{(2^{n-1}+i)1} \cdot x_{(2i-1)1} + a_{(2^{n-1}+i)2} \cdot x_{(2i)1}$, para $i \ge 1, ..., 2^{n-1}$.

Explicitamente, la multiplicación \star está dada por:

$$\boldsymbol{A} \star \boldsymbol{X} = \begin{pmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 \\ a_{21} \cdot x_3 + a_{22} \cdot x_4 \\ \vdots \\ a_{(2^{n-1})1} \cdot x_{2^n-1} + a_{(2^{n-1})2} \cdot x_{2^n} \\ a_{(2^{n-1}+1)1} \cdot x_1 + a_{(2^{n-1}+1)2} \cdot x_2 \\ a_{(2^{n-1}+2)1} \cdot x_3 + a_{(2^{n-1}+2)2} \cdot x_4 \\ \vdots \\ a_{(2^n)1} \cdot x_{2^n-1} + a_{(2^n)2)} \cdot x_{2^n} \end{pmatrix}.$$

Proposición 2.3.1. Dado $n \in \mathbb{N}$, sea MT_n la matriz asociada en el refinamiento n-1 y MT'_n definida en 2.1. Si $X \in \mathcal{M}_{2^n \times 1}$, entonces $MT_nX = MT'_n \star X$.

$$\boldsymbol{MT_n X} = \begin{pmatrix} \hat{y}_{11} \cdot x_1 + \hat{y}_{12} \cdot x_2 + 0 * x_3 + 0 * x_4 + \dots + 0 \cdot x_{2^{n-1}} + 0 \cdot x_{2^n} \\ 0 \cdot x_1 + 0 \cdot x_2 + \hat{y}_{23} \cdot x_3 + \hat{y}_{24} \cdot x_4 + \dots + 0 \cdot x_{2^{n-1}} + \hat{y}_{2^{n-1}})(2^n) \cdot x_{2^n} \\ \hat{y}_{(2^{n-1}+1)1} \cdot x_1 + \hat{y}_{(2^{n-1}+1)2} \cdot x_2 + 0 \cdot x_3 + 0 * x_4 + \dots + 0 \cdot x_{2^{n-1}} + 0 \cdot x_{2^n} \\ 0 \cdot x_1 + 0 \cdot x_2 + \hat{y}_{(2^{n-1}+2)3} \cdot x_3 + \hat{y}_{(2^{n-1}+2)4} * x_4 + \dots + 0 \cdot x_{2^{n-1}} + 0 \cdot x_{2^n} \\ 0 \cdot x_1 + 0 \cdot x_2 + \hat{y}_{(2^{n-1}+2)3} \cdot x_3 + \hat{y}_{(2^{n-1}+2)4} * x_4 + \dots + 0 \cdot x_{2^{n-1}} + 0 \cdot x_{2^n} \\ \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + 0 \cdot x_4 + \dots + \hat{y}_{(2^n)(2^{n-1})} \cdot x_{2^{n-1}} + \hat{y}_{2^{n}2^n} \cdot x_{2^n} \end{pmatrix}$$

De la definición de la multiplicación $\star,$ se sigue que

$$\boldsymbol{MT_n'} \star \boldsymbol{X} = \begin{pmatrix} \widehat{y_{11}} & x_1 + \widehat{y_{12}} \cdot x_2 \\ \widehat{y_{23}} \cdot x_3 + \widehat{y_{24}} \cdot x_4 \\ \vdots \\ \widehat{y_{(2^{n-1})(2^n-1)}} \cdot x_{2^n-1} + \widehat{y_{(2^{n-1})(2^n)}} \cdot x_{2^n} \\ \widehat{y_{(2^{n-1}+1)1}} \cdot x_1 + \widehat{y_{(2^{n-1}+1)2}} \cdot x_2 \\ \widehat{y_{(2^{n-1}+2)3}} \cdot x_3 + \widehat{y_{(2^{n-1}+2)4}} \cdot x_4 \\ \vdots \\ \widehat{y_{(2^n)(2^n-1)}} \cdot x_{2^n-1} + \widehat{y_{2^n2^n}} \cdot x_{2^n} \end{pmatrix},$$

lo que prueba lo deseado.

Con la matriz MT'_n y el método de la potencia normalizado, explicado en el apéndice A, tenemos el siguiente resultado.

Corolario 2.3.2. El radio espectral de MT_n aproximado con el método de la potencia normalizado, se puede aproximar usando la matriz MT'_n con la multiplicación \star .

Demostración. Note que

2.4. Resultados

La implementación del algoritmo del valor propio fue hecha en MATLAB. Iniciamos trabajando con parámetros reales en la familia cuadrática, ver la tabla 2.1. Estos resultados obtenidos de la dimensión Hausdorff de los conjuntos de Julia coinciden en los dos primeros decimales con los resultados de la Tabla 13 en [McMI]. Usando la construcción de la espina dorsal, calculamos la dimensión Hausdorff de parámetros en una curva que conecta el cero con el centro de la componente hiperbólica de periodo dos, tres y cuatro, ver tablas 2.1, 2.2, 2.3. Los resultados para los conjuntos de Julia conexos se muestran en la figura 2.3. Calculando la dimensión Hausdorff de los J_c conexos, el radio espectral como función de la potencia de MT_n , es siempre una función decreciente y toma el valor de uno, independientemente del refinamiento, [McMI]. Sin embargo, en el caso en el que los conjuntos de Julia son disconexos, encontramos que para algún refinamiento, esta función no es decreciente o es una función decreciente, pero no toma el valor de uno, y es necesario hacer un refinamiento más fino para tener un radio espectral uno. En la figura 2.4 mostramos el comportamiento del radio espectral para los primeros veinte refinamientos, tomando c = 0.28. La gráfica en color azul muestra el radio espectral para los primeros diez refinamientos y la gráfica en color negro muestra los refinamientos once-dieciocho, para los cuales el radio espectral no toma el valor de uno. En color rojo mostramos el refinamiento diecinueve, el cual es la primera vez donde el radio espectral es otra vez una función decreciente tomando el valor de uno. Existen ocho refinamientos para los cuales la función no toma el valor de uno. Debido a esto, el algoritmo del valor propio no da la dimensión Hausdorff para estos refinamientos. En la figura 2.5, mostramos los intervalos de refinamientos para los cuales el radio espectral no toma el valor de uno, cuando el parámetro c es un parámetro real cercano a 1/4. En esta figura, podemos ver una sucesión de estrellas rojas, para las cuales el radio espectral toma el valor de uno. En efecto, esta es una sucesión decreciente en el intervalo $(1/4, 1/4 + \epsilon)$. Por lo tanto, cuando el parámetro es muy cercano a 1/4 es necesario hacer refinamiento mas fino para tener una mejor aproximación a la dimensión Hausdorff de J_c . Debido a la dimensión de la matriz de transición, la implementación es limitada a 30 refinamientos. Finalmente, en la figura 2.6, mostramos que la dimensión Hausdorff de J_c presenta una pequeña oscilación. Esto reafirma numéricamente la conjetura hecha en previos trabajos, [McMI, BZ]. Si se deseara tener mejores resultados cerca de c = 1/4, se requiere mejorar el algoritmo o las capacidades del la DOOSCC sofware. Continuaremos trabajando para mejorar el algoritmo.

Figura 2.4: Función radio espectral para c = 0.28.

Figura 2.5: Comportamiento del radio espectral, para parámetros cerca de $c = \frac{1}{4}$. Los radios espectrales no toman el valor de uno para refinamientos entre la estrella azul y la estrella roja.

Figura 2.6: Dimensión Hausdorff para parámetros reales.

C	Dimongión	C	Dimongión	C	Dimongión	С	Dimongián
			1 192950		1 018202	0.12	1,006670
-1	1.208415	-0.62	1.123259	-0.25	1.018203	0.12	1.000070
-0.99	1.207291	-0.61	1.118107	-0.24	1.016840	0.13	1.008000
-0.98	1.266267	-0.60	1.113182	-0.23	1.015530	0.14	1.009661
-0.97	1.265336	-0.59	1.108464	-0.22	1.014272	0.15	1.011482
-0.96	1.264489	-0.58	1.103942	-0.21	1.013067	0.16	1.013565
-0.95	1.263721	-0.57	1.099601	-0.20	1.011913	0.17	1.015956
-0.94	1.263026	-0.56	1.095430	-0.19	1.010811	0.18	1.018715
-0.93	1.262397	-0.55	1.091420	-0.18	1.009759	0.19	1.021928
-0.92	1.261831	-0.54	1.087560	-0.17	1.008760	0.20	1.025717
-0.91	1.261323	-0.53	1.083842	-0.16	1.007811	0.21	1.030266
-0.90	1.260872	-0.52	1.080259	-0.15	1.006913	0.22	1.035891
-0.89	$1.2\overline{60476}$	-0.51	1.076804	-0.14	1.006066	0.23	$1.0\overline{43197}$
-0.88	1.260134	-0.50	1.073471	-0.13	1.005272	0.24	1.053698
-0.87	1.259847	-0.49	1.070253	-0.12	1.004529	0.25	1.075053
-0.86	1.259611	-0.48	1.067145	-0.11	1.003838	0.27	1.267011
-0.85	1.259413	-0.47	1.064142	-0.10	1.003201	0.28	1.256697
-0.84	1.259221	-0.46	1.061241	-0.09	1.002618	0.29	1.252537
-0.83	1.258959	-0.45	1.058436	-0.08	1.002089	0.30	1.253433
-0.82	1.258475	-0.44	1.055723	-0.07	1.001616	0.31	1.244178
-0.81	1.257505	-0.43	1.053099	-0.06	1.001201	0.32	1.224209
-0.80	1.255653	-0.42	1.050561	-0.05	1.000843	0.33	1.207289
-0.79	1.252433	-0.41	1.048106	-0.04	1.000546	0.34	1.192878
-0.78	1.247429	-0.40	1.045730	-0.03	1.000311	0.35	1.179657
-0.77	1.240514	-0.39	1.043432	-0.02	1.000140	0.36	1.167135
-0.76	1.231970	-0.38	1.041207	-0.01	1.000036	0.37	1.155133
-0.75	1.222380	-0.37	1.039055	-0.00	1.000000	0.38	1.143571
-0.74	1.212388	-0.36	1.036973	0.01	1.000037	0.39	1.132409
-0.73	1.202489	-0.35	1.034958	0.02	1.000149	0.40	1.121617
-0.72	1.192978	-0.34	1.033010	0.03	1.000341	0.41	1.111172
-0.71	1.183984	-0.33	1.031126	0.04	1.000617	0.42	1.101054
-0.70	1.175535	-0.32	1.029305	0.05	1.000982	0.43	1.091244
-0.69	1.167609	-0.31	1.027545	0.06	1.001442	0.44	1.081726
-0.68	1.160164	-0.30	1.025845	0.07	1.002004	0.45	1.072483
-0.67	1.153152	-0.29	1.024204	0.08	1.002676	0.46	1.063502
-0.66	1 146532	-0.28	1.022620	0.00	1 003466	0.10 0.47	1.054770
-0.65	1 140263	-0.20	1.022020	0.05	1 004387	0.48	1.03110
-0.64	1 13/31/	-0.26	1 010691	0.10	1 005//0	0.40	1.038005
-0.63	1 198653	-0.20	1.013021	0.11	1.000443	0.49	1 020052
0.00	1.120000		1	l	l	0.00	1.023302
	Cua	adro 2.	1: Dimensión	Hausd	orff para $c \in$	$\mathbb{R}.$	
					-		

Cuadro 2.1: Dimensión Hausdorff para $c\in\mathbb{R}.$

С	Dimensión	С	Dimensión	
0	1	-0.1125 + 0.58456i	1.177028	
-0.0025 + 0.01299i	1.000063	-0.115 + 0.59755i	1.192596	
-0.005 + 0.02598i	1.000251	-0.1175 + 0.61054i	1.209166	
-0.0075 + 0.03897i	1.000562	-0.12+ 0.62353i	1.229165	
-0.01 + 0.05196i	1.000996	-0.1225 + 0.63652i	1.251815	
-0.0125 + 0.06495i	1.001552	-0.125 + 0.64951i	1.266758	
-0.015 + 0.07794i	1.002228	-0.1249 + 0.65342i	1.267954	
-0.0175 + 0.09093i	1.003025	-0.1248 + 0.65733i	1.270446	
-0.02 + 0.10392i	1.003941	-0.1247 + 0.66124i	1.275719	
-0.0225 + 0.11691i	1.004978	-0.1246 + 0.66515i	1.279776	
-0.025 + 0.12990i	1.006134	-0.1245 + 0.66906i	1.286654	
-0.0275+ 0.14289i	1.007412	-0.1244 + 0.67297i	1.303359	
-0.03 + 0.15588i	1.008810	-0.1243 + 0.67688i	1.311370	
-0.0325 + 0.16887i	1.010331	-0.1242 + 0.68079i	1.322106	
-0.035 + 0.18186i	1.011975	$-0.124\overline{1+0.68470}i$	1.330481	
-0.0375 + 0.19485i	1.013747	-0.124 + 0.68861i	1.335202	
-0.04 + 0.20784i	1.015648	-0.1239 + 0.69252i	1.340672	
-0.0425 + 0.22083i	1.017679	-0.1238 + 0.69643i	1.343542	
-0.045 + 0.23382i	1.019847	-0.1237 + 0.70034i	1.348002	
-0.0475 + 0.24681i	1.022149	-0.1236 + 0.70425i	1.342106	
-0.05 + 0.25980i	1.024589	-0.1235 + 0.70815i	1.343372	
-0.0525 + 0.27279i	1.027195	-0.1234 + 0.71206i	1.347681	
-0.055 + 0.28578i	1.029915	-0.1233 + 0.71597i	1.352024	
-0.0575 + 0.29877i	1.032852	-0.1232 + 0.71988i	1.355942	
-0.06 + 0.31176i	1.035931	-0.1231 + 0.72379i	1.360095	
-0.0625 + 0.32475i	1.039195	-0.123 + 0.72770i	1.359987	
-0.065 + 0.33774i	1.042530	-0.1229 + 0.73161i	1.365134	
-0.0675 + 0.35074i	1.046248	-0.1228 + 0.73552i	1.366067	
-0.07 + 0.36373i	1.050106	-0.1227 + 0.73943i	1.370066	
-0.0725 + 0.37672i	1.054207	-0.1226 + 0.74334i	1.374997	
-0.075 + 0.38971i	1.058490	-0.1225 + 0.74725i	1.378708	
-0.0775 + 0.40270i	1.062997	-0.1224 + 0.75116i	1.382124	
-0.08 + 0.41569i	1.067854	-0.1223 + 0.75507i	1.384676	
-0.0825 + 0.42868i	1.073057	-0.1222 + 0.75898i	1.388274	h
-0.085 + 0.441671	1.078559	-0.1221 + 0.762891	1.391380	
-0.0875 + 0.45466i	1.084506	-0.122 + 0.76679i	1.395073	
-0.09+0.46765i	1.090794	-0.1219 + 0.77070i	1.399271	
-0.0925 + 0.48064i	1.097526	-0.1218 + 0.77461i	1.402785	2
-0.095 + 0.49363i	1.104678	-0.1217 + 0.77852i	1.406990	LU.
-0.0975 + 0.506621	1.111800	-0.1210 + 0.782431	1.410708	C
-0.1 + 0.519611	1.120563	-0.1215 + 0.786341	1.411352	
-0.1025 + 0.532601	1.129697	-0.1214 + 0.790251 0.1212 + 0.70416	1.418603	
-0.100 + 0.545591	1.139951	-0.1213 + 0.794101	1.422830	
-0.1070 + 0.00000000000000000000000000000000	1.131100	-0.1212 + 0.798071	1.42(1(2	
-0.11 ± 0.071071	1.109919	-0.1211 ± 0.019841 0.121 ± 0.905902	1.431030	
1	1	-0.121+0.803891	1.433030	

Cuadro 2.2: Dimensión Hausdorff para $c\in\mathbb{C}.$

	С	Dimensión	С	Dimensión	
	0	1	0.21 + 0.42i	1.140326	
\sim	0.005 + 0.01i	1.000045	0.215 + 0.43i	1.152410	
	0.01 + 0.02i	1.000183	0.22 + 0.44i	1.165328	
	0.015 + 0.03i	1.000415	0.225 + 0.45i	1.180582	
	0.02 + 0.04i	1.000745	0.23 + 0.46i	1.199670	
	0.025 + 0.05i	1.001173	0.235 + 0.47i	1.221060	
	0.03 + 0.06i	1.001704	0.24 + 0.48i	1.246596	
	0.035 + 0.07i	1.002340	0.245 + 0.49i	1.279634	
	0.04 + 0.08i	1.003083	0.25 + 0.5i	1.319456	
	0.045 + 0.09i	1.003937	0.251 + 0.50093i	1.326470	
	0.05 + 0.1i	1.004902	0.252 + 0.50186i	1.332258	
	0.055 + 0.11i	1.0059832	0.253 + 0.50279i	1.338319	
	0.06+0.12i	1.007188	0.254 + 0.50372i	1.343783	
	0.065 + 0.13i	1.008517	0.255 + 0.50465i	1.350388	
	0.07 + 0.14i	1.009970	0.256 + 0.50558i	1.356874	
	0.075 + 0.15i	1.011554	0.257 + 0.50652i	1.364164	
	0.08 + 0.16i	1.013270	0.258 + 0.50745i	1.369970	
	0.085 + 0.17i	1.0151239	0.259 + 0.50838i	1.375797	
	0.09 + 0.18i	1.017150	0.26 + 0.50931i	1.381487	
	0.095 + 0.19i	1.019270	0.261 + 0.51024i	1.387924	
	0.1 + 0.2i	1.021622	0.262 + 0.51117i	1.389314	
	0.105 + 0.21i	1.024086	0.263 + 0.51210i	1.398243	
	0.11 + 0.22i	1.026659	0.264 + 0.51304i	1.404607	
	0.115 + 0.23i	1.029522	0.265 + 0.51397i	1.409528	
	0.12 + 0.24i	1.032524	0.266 + 0.51490i	1.410291	
	0.125 + 0.25i	1.035708	0.267 + 0.51583i	1.418016	
	0.13 + 0.26i	1.039169	0.268 + 0.51676i	1.422550	
	0.135 + 0.27i	1.042832	0.269 + 0.51769i	1.426691	
	0.14 + 0.28i	1.046648	0.27 + 0.518629i	1.430568	
	0.145 + 0.29i	1.050517	0.271 + 0.51956i	1.432336	
	0.15 + 0.3i	1.055154	0.272 + 0.52049i	1.437480	
	0.155 + 0.31i	1.059800	0.273 + 0.52142i	1.440848	
	0.16 + 0.32i	1.064697	0.274 + 0.52235i	1.444070	~
	0.165 + 0.33i	1.069686	0.275 + 0.52328i	1.445501	
	0.17 + 0.34i	1.075465	0.276 + 0.52421i	1.446016	
	0.175 + 0.35i	1.081364	0.277 + 0.52515i	1.448176	
	0.18 + 0.36i	1.088057	0.278 + 0.52608i	1.414680	U,
	0.185 + 0.37i	1.094955	0.279 + 0.52701i	1.419380	$\mathbf{\nabla}_{\mathbf{r}}$
	0.19 + 0.38i	1.102816	0.28 + 0.527944i	1.421884	ŢĽ.
	0.195 + 0.39i	1.110953	0.281 + 0.52887i	1.427411	
	0.2 + 0.4i	1.119791	0.282 + 0.52980i	1.434979	
	0.205 + 0.41i	1.129536			•

Cuadro 2.3: Dimensión Hausdorff para $c\in\mathbb{C}.$

Capítulo 3

Dimensión Hausdorff de conjuntos de Julia de polinomios cuárticos

En este capítulo estudiaremos la dimensión Hausdorff de los conjuntos de Julia de la familia $Q_b(z) = z^4 + bz^2$. Para ello implementaremos el algoritmo del valor propio para el caso $b \in \mathbb{C}$ y $Q_b(z)$ hiperbólico. En este capítulo denotaremos por $\mathcal{K}_b = K_{Q_b}$ y $\mathcal{J}_b = J_{Q_b}$

3.1. Arcos regulares

En esta sección construimos los arcos regulados en los conjuntos de Julia de los polinomios $Q_b(z) = z^4 + bz^2$ para el caso hiperbólico.

El lugar de conexidad correspondiente a esta familia lo denotaremos por

$$\mathcal{M} = \{ b \in \mathbb{C} : \mathcal{K}_b \text{ es conexo} \},\$$

véase la figura 3.1.

El polinomio $Q_b(z)$ tiene tres puntos críticos que son $c_0 = 0$, $c_1 = \sqrt{\frac{-b}{2}}$ y $c_2 = -\sqrt{\frac{-b}{2}}$. Ya que $Q_b(0) = 0$ y $Q_b(c_1) = Q_b(c_2) = \frac{-b^2}{4}$, esta familia de polinomios cuárticos puede presentar a lo más dos dinámicas diferentes. En particular, cuando las órbitas de c_0 y c_1 son acotadas, \mathcal{J}_b es conexo.

Los puntos fijos del polinomio $Q_b(z)$ son, $z_0 = 0$,

$$z_{1} = \frac{(\sqrt{3(4b^{3}+27)}+9)^{1/3}}{18^{1/3}} - \frac{(\frac{2}{3})^{1/3}b}{(\sqrt{3(4b^{3}+27)}+9)^{1/3}},$$

$$z_{2} = \frac{(1+i\sqrt{3})b}{18^{1/3}(\sqrt{3(4b^{3}+27)}+9)^{1/3}} - \frac{(1-i\sqrt{3})(\sqrt{3(4b^{3}+27)}+9)^{1/3}}{2\cdot 18^{1/3}},$$

$$z_{3} = \frac{(1-i\sqrt{3})b}{18^{1/3}(\sqrt{3(4b^{3}+27)}+9)^{1/3}} - \frac{(1+i\sqrt{3})(\sqrt{3(4b^{3}+27)}+9)^{1/3}}{2\cdot 18^{1/3}}.$$

El punto z_0 siempre es super-atractor y de los otros tres a lo más uno es atractor. Denotemos por $\alpha_b = 0$ el punto fijo super-atractor y $\alpha_{b,1}$ el punto fijo que para

algunas b es atractor. Dado que el polinomio Q_b tiene un punto fijo super-atractor en el infinito, por el teorema de Böttcher existe una vecindad U del infinito donde el polinomio Q_b es analíticamente conjugado a la función z^4 y dado que α_b es punto fijo super-atractor por el teorema de Böttcher existe una vecindad V del cero donde el polinomio Q_b es analíticamente conjugado a la función z^2 . Sea β_b el punto fijo que tiene ángulo interno cero y elegimos la coordenada de Böttcher en el infinito de tal manera que β_b tenga ángulo externo cero, es decir, las extensiones de ambas conjugaciones coinciden en el punto fijo β_b .

A partir de ahora, suponemos que Q_b es hiperbólico. Si \mathcal{J}_b es conexo, el teorema 1.6.20 garantiza la existencia de una partición de Markov expansiva $P = \langle (P_i, Q_b) \rangle$ con $P_i = \phi_{Q_b}(P'_i)$ con i = 1, 2, 3, 4, donde $P'_1 = [0, \frac{1}{4}], P'_2 = [\frac{1}{4}, \frac{2}{4}], P'_3 = [\frac{2}{4}, \frac{3}{4}]$ y $P'_4 = [\frac{3}{4}, 1]$ y ϕ_{Q_b} es una semiconjugación entre la función multiplicación por cuatro y $Q_b|_{\mathcal{J}_b}$, [McMI].

Para conocer los argumentos externos de los puntos sobre el conjunto de Julia, vamos a construir dos curvas, Γ_b y Γ'_b que dividen al plano en cuatro regiones S_0, S_1, S_2, S_3 . Sean $\beta_{b,1}, \beta_{b,2}$ y $\beta_{b,3}$ las imágenes inversas de β_b con ángulo externo $\theta = 1/2, \theta = 1/4$ y $\theta = 3/4$, respectivamente. La curva Γ_b estará formada por el rayo externo que aterriza en $\beta_{b,1}$, el rayo externo que aterriza en β_b y una curva $\Gamma_{\mathcal{K}_b}$ que construiremos dentro de \mathcal{K}_b conectando a β_b con $\beta_{b,1}$. La curva Γ'_b esta formada por el rayo externo que aterriza en $\beta_{b,2}$, el rayo externo que aterriza en $\beta_{b,3}$ y una curva $\Gamma'_{\mathcal{K}_b}$ que construiremos dentro de \mathcal{K}_b conectando a $\beta_{b,2}$ con $\beta_{b,3}$. Ya que \mathcal{K}_b es localmente conexo, las curvas Γ_b y Γ'_b existen, pero en general no son únicas. Por lo tanto, es necesario definir arcos regulares dentro de las componentes de Fatou en \mathcal{K}_b , [DH].

Las curvas Γ_b y Γ'_b permitirán calcular los argumentos externos de los puntos en \mathcal{J}_b . Los puntos en $S_0 \cap \mathcal{J}_b$ tienen argumento externo en $[0, \frac{1}{4}]$, los puntos en $S_1 \cap \mathcal{J}_b$ tienen argumento externo en $[\frac{1}{4}, \frac{2}{4}]$, los puntos en $S_2 \cap \mathcal{J}_b$ tienen argumento externo en $[\frac{2}{4}, \frac{3}{4}]$ y los puntos en $S_3 \cap \mathcal{J}_b$ tienen argumento externo en $[\frac{3}{4}, 1]$. La partición $\{S_0, S_1, S_2, S_3\}$ y la semiconjugación ϕ_{Q_b} permiten asociar su argumento externo a

todas las imágenes inversas de β_b bajo Q_b . Para aplicar el algoritmo del valor propio comenzamos con los bloques $P_1 = S_0 \cap \mathcal{J}_b$, $P_2 = S_1 \cap \mathcal{J}_b$, $P_3 = S_2 \cap \mathcal{J}_b$ y $P_4 = S_3 \cap \mathcal{J}_b$. Los refinamientos de esta partición, los obtendremos tomando las imágenes inversas de P_j bajo Q_b para j = 1, 2, 3, 4 y tomando puntos muestra en $Q_b^{-(n+1)}(\beta_{b,1})$.

Sea $\mathcal{M}' = \bigcup_{i \in I} W_i$, donde W_i es una componente hiperbólica de \mathcal{M} para toda $i \in I$ y sea \mathcal{W}_0 la componente principal del lugar de conexidad. En el caso en que $b \in \mathcal{W}_0 \cap \mathbb{R}$, tenemos que $\beta_b \in \mathbb{R}$. Como Q_b es hiperbólico existe $U \subset Int(\mathcal{K}_b)$, componente de Fatou periódica, la cual contiene un punto periódico atractor. Definimos el centro de U como el punto periódico atractor o super-atractor z_U de U. Por el teorema de Sullivan toda componente $V \subset Int(\mathcal{K}_b)$ es eventualmente periódica, es decir, existe m tal que $Q_b^m(V) = U$, por lo que definimos el centro de V como $Q_b^{-m}(z_U) \in V$, [CG, B].

Sea $b \in W_i$ y U la componente periódica de periodo k que contiene al crítico. El conjunto U es invariante bajo Q_b^k y $Q_b^k|_U$ es un cubriente ramificado de grado dos. Si el punto crítico de Q_b no es periódico, por el teorema de Koenigs existe un biholomorfismo $\varphi_U : U \to \mathbb{D}$ que envía el centro de U en 0 y conjuga analíticamente Q_b^k con λz . Además esta conjugación se extiende continuamente a la frontera de U.

Sea $z_0 \in D(z_U, r)$ y $z_0 \neq z_U$. Se define el arco regular que une a z_U con z_0 , como $\varphi_U^{-1}(\Upsilon([0,1]))$, donde $\Upsilon([0,1])$ es el segmento de recta que une a $\varphi_U(z_0)$ con $\varphi_U(z_U)$ en \mathbb{D} y lo denotaremos por $[z_0, z_U]_U$, algunas ocasiones será conveniente tomar a $z_0 = Q_b^{-k}(z_U) \in U$ y $z_0 \neq z_U$. Sea $z_1 \in \{Q_b^{-k}(z_0)\} \cap U$, dado el arco $[z_0, z_U]_U$, definimos el arco regular que une a z_0 con z_1 como la curva $[z_1, z_0]_U$ en U tal que $Q_b^k([z_1, z_0]_U) = [z_0, z_U]_U$. De manera general, si $z_{n+1} \in \{Q_b^{-k}(z_n)\} \cap U$ definimos el arco que une a z_{n+1} con z_n como la curva $[z_{n+1}, z_n]_U$ en U tal que, $Q_b^k([z_{n+1}, z_n]_U) = [z_n, z_{n-1}]_U$.

Si el punto crítico de Q_b es periódico, por el teorema de Böttcher existe un biholomorfismo $\Phi_U: U \to \mathbb{D}$ que envía el centro de U en 0 y conjuga Q_b^k con z^4 . Además esta conjugación se extiende continuamente a la frontera de U. Sea $z'_U \in U$ el punto fijo repulsor para Q_b^k y $z_0 = Q_b^{-k}(z'_U) \in U$ con $z_0 \neq z_U$. Se define el arco regular, que une a z_0 con z'_U , como la curva $\Phi_U^{-1}(\Upsilon_1([0,1]))$, donde $\Upsilon_1([0,1])$ es el segmento de recta que pasa por cero y une a $\Phi_U(z'_U)$ con $\Phi_U(z_0)$ en $\overline{\mathbb{D}}$ y lo denotaremos por $[z_0, z'_U]_{\overline{U}}$. Para $z_1 \in \{Q_b^{-k}(z_0)\} \cap U$, dado el arco $[z_0, z'_U]_{\overline{U}}$ definimos el arco regular que une a z_0 con z_1 en \mathcal{K}_b como la curva $[z_1, z_0]_{\mathcal{K}_b}$ tal que $Q_b^k([z_1, z_0]_{\overline{U}}) = [z_0, z'_U]_{\overline{U}}$. De manera general, para $z_{n+1} \in \{Q_b^{-k}(z_n)\}$, dado el arco $[z_n, z_{n-1}] \in \mathcal{K}_b$, definimos el arco regular que une a z_{n+1} con z_n como la curva $[z_{n+1}, z_n]_{\mathcal{K}_b}$ tal que $Q_b^k([z_{n+1}, z_n]_{\mathcal{K}_b}) = [z_n, z_{n-1}]_{\mathcal{K}_b}$. Para ambos casos definimos el arco regular $[z_k, z_{k+j}]_{\mathcal{K}_b} = \bigcup_{i=0}^{j-1} [z_{k+i}, z_{k+i+1}]_{\mathcal{K}_b}$.

Construcción de las curvas Γ_b, Γ'_b 3.2.

3.2.1. Caso en que $b \in \mathcal{W}_0$

Si $b \in \mathcal{W}_0$ se construye la curva $\Gamma_{\mathcal{K}_b}, \Gamma'_{\mathcal{K}_b}$ de la siguiente manera: Para $z_U = \alpha_b$ se elige z_0 como la imagen inversa de z_U más cercana a β_b y dado z_i se elige z_{i+1} como la imagen inversa de z_i bajo Q_b mas cercana a β_b . Si $\{z_n\}_{n\geq 0}$ es la sucesión anterior, construimos una curva uniendo z_n con z_{n+1} mediante arcos regulados para $n \ge 0$. Los arcos obtenidos de la sucesión $\{z_n\}_{n\geq 0}$ se parametrizan con funciones γ_n de tal manera que:

$$\gamma_n([-(n+1), -n]) = [z_{n+1}, z_n]_{\mathcal{K}_b}, \quad \gamma_n(-(n+1)) = z_{n+1}$$

 $y \gamma_n(-n) = z_n \forall n \ge 0.$ Sea \mathcal{C}_b la clausura del conjunto post-crítico de Q_b . Se define la curva

$$\gamma_b: (-\infty, 0] \to \mathbb{C} \setminus \mathcal{C}_b$$

como $\gamma_n(t)$ si $t \in [-(n+1), -n]$ con $n \ge 0$. Por la construcción de los arcos regulados $[z_{n+1}, z_n]_{\mathcal{K}_b}$ se tiene que si $t \leq -1$, entonces

$$Q_b(\gamma_b(t)) = Q_b(\gamma_n(t)) = \gamma_{n-1}(t) = \gamma_b(t+1).$$

Por la Proposicion 2.2.1 tenemos el siguiente resultado.

Proposición 3.2.1. La sucesión $\{z_n\}_{n\geq 0}$ definida anteriormente converge al punto fijo repulsor β_b y la cerradura de la imagen de la curva γ_b conecta a $z_0 \, \operatorname{con} \, \beta_b$. Sea $\Gamma_b^1 = \gamma_b([-\infty, 0])$ y $\Gamma_b^2 = -\Gamma_b^1$. Observación 3.2.2. Γ_b^2 conecta a $-z_0 \operatorname{con} -\beta_b = \beta_{b,1}$

Definimos $\Gamma_{\mathcal{K}_b} = \Gamma_b^2 \cup [-z_0, \alpha_b]_{\mathcal{K}_b} \cup [\alpha_b, z_0]_{\mathcal{K}_b} \cup \Gamma_b^1$, a $\Gamma_{\mathcal{K}_b}$ se le llama espina dorsal de \mathcal{K}_b .

Note que si Γ_b^1 conecta a z_0 con β_b , entonces existe una imagen inversa de Γ_b^1 que conecta a $f^{-1}(z_0)$ con $\beta_{b,2}$, donde $f^{-1}(z_0)$ es la imagen inversa más cercana a $\beta_{b,2}$. Sea $(\Gamma'_b)^1 = Q^{-1}(\Gamma^1_b)$ que conecta a $Q^{-1}(z_0)$ con $\beta_{b,2}$ y $(\Gamma'_b)^2 \longrightarrow (\Gamma'_b)^1$.

Observación 3.2.3. $(\Gamma_b')^2$ conecta a $-Q^{-1}(z_0)$ con $\beta_{b,3}$.

Definimos a $\Gamma'_{\mathcal{K}_b} = (\Gamma'_b)^1 \cup [Q^{-1}(z_0), \alpha_b]_{\mathcal{K}_b} \cup [\alpha_b, -Q^{-1}(z_0)]_{\mathcal{K}_b} \cup (\Gamma'_b)^2$ Por construcción de ambas curvas se tiene el siguiente resultado.

Proposición 3.2.4. Sea $\mathbf{D} = \mathcal{J}_b \setminus \{\Gamma'_b, \Gamma_b\}$. Las curvas Γ'_b, Γ_b dividen a \mathbf{D} en cuatro sectores:

$$S_{0} = \{z \in \mathcal{J}_{b} : \text{el argumento externo } \theta \text{ cumple } 0 < \theta < \frac{1}{4}\},$$

$$S_{1} = \{z \in \mathcal{J}_{b} : \text{el argumento externo } \theta \text{ cumple } \frac{1}{4} < \theta < \frac{1}{2}\},$$

$$S_{2} = \{z \in \mathcal{J}_{b} : \text{el argumento externo } \theta \text{ cumple } \frac{1}{2} < \theta < \frac{3}{4}\},$$

$$S_{3} = \{z \in \mathcal{J}_{b} : \text{el argumento externo } \theta \text{ cumple } \frac{3}{4} < \theta < 1\}.$$

3.3. Descripción de la matriz de transición

Para aplicar el algoritmo del valor propio, tomamos como partición inicial la que nos propone el teorema 1.6.20 y escogemos los puntos muestra de tal forma que exista uno en cada elemento de la partición. Tomamos

$$\{x_1, x_2, x_3, x_4\} = \{\phi_b(\frac{1}{8}), \phi_b(\frac{3}{8}), \phi_b(\frac{5}{8}), \phi_b(\frac{7}{8})\} = Q_b^{-1}(\beta_{b,1}),$$

donde $\beta_{b,1} = \phi(\frac{1}{2})$ y es una imagen inversa del punto fijo β_b de Q_b con argumento externo cero. Así, $Q_b^2(x_i) = \beta_b$ y todos los puntos muestra para todos los refinamientos están en la órbita inversa de β_b . Note que si $\overline{y_{ij}} \in S^1$ entonces $\phi_b(\overline{y_{ij}}) = y_{ij} \in \mathcal{J}_b$. De $\{x_1, x_2, x_3, x_4\}$ obtenemos: $y_{11}, y_{21}, y_{31}, y_{41}$ que son preimágenes de $x_1; y_{12}, y_{22}, y_{32}, y_{42}$ que son preimágenes de $x_2; y_{13}, y_{23}, y_{33}, y_{43}$ que son preimágenes de $x_3;$ y finalmente $y_{14}, y_{24}, y_{34}, y_{44}$ que son preimágenes de x_4 . Los puntos $y_{11}, y_{21}, y_{31}, y_{41}$ están localizados en P_1 en la región S_0 , los puntos $y_{12}, y_{22}, y_{32}, y_{42}$ están localizados en P_2 en la región S_1 , los puntos $y_{13}, y_{23}, y_{33}, y_{43}$ están localizados en P_3 en la región S_2 y los puntos $y_{14}, y_{24}, y_{34}, y_{44}$ están localizados en P_4 en la región S_3 , véase figura 3.2. Con esta partición inicial, construimos una matriz de transición preliminar $P'T_1$ y entonces obtenemos $M'T_1$,

$$\boldsymbol{P'T_1} = \begin{pmatrix} y_{11} & y_{12} & y_{13} & y_{14} \\ y_{21} & y_{22} & y_{23} & y_{24} \\ y_{31} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & y_{44} \end{pmatrix}, \boldsymbol{M'T_2} = \begin{pmatrix} \widehat{y}_{11} & \widehat{y}_{12} & \widehat{y}_{13} & \widehat{y}_{14} \\ \widehat{y}_{21} & \widehat{y}_{22} & \widehat{y}_{23} & \widehat{y}_{24} \\ \widehat{y}_{31} & \widehat{y}_{32} & \widehat{y}_{33} & \widehat{y}_{34} \\ \widehat{y}_{41} & \widehat{y}_{42} & \widehat{y}_{43} & \widehat{y}_{44} \end{pmatrix}$$

donde $\hat{y}_{ij} = |Q'(y_{ij})|^{-1}$.

En general, si x es un punto en la órbita inversa de $\beta_{b,1}$ bajo Q_b entonces $Q_b^{-1}(x) = \{y_1, y_2, y_3, y_4\}$ y los puntos y_1, y_2, y_3, y_4 tienen asociado un argumento externo $\theta_1, \theta_2, \theta_3, \theta_4$ respectivamente. Para implementar el algoritmo del valor propio tenemos que saber si y_1 , o y_2 , o y_3 , o y_4 tienen argumento externo en $(0, \frac{1}{4})$ o si y_1 , o y_2 , o y_3 , o y_4 tienen argumento externo en $(0, \frac{1}{4})$ o si y_1 , o y_2 , o y_3 , o y_4 tienen argumento externo en $(\frac{1}{2}, \frac{3}{4})$, o si y_1, y_2 , o y_3 , o y_4 tienen argumento externo en $(\frac{1}{2}, \frac{3}{4})$, o si y_1, y_2 , o y_3 , o y_4 tienen argumento externo en $(\frac{3}{4}, 1)$. Cuando $b \in \mathbb{R}$ y tomando a

$$\beta_b = \frac{(\sqrt{3(4b^3 + 27)} + 9)^{1/3}}{18^{1/3}} - \frac{(\frac{2}{3})^{1/3}b}{(\sqrt{3(4b^3 + 27)} + 9)^{1/3}},$$

es suficiente verificar la el signo de la parte real y de la parte imaginaria de los puntos y_1, y_2, y_3, y_4 para saber sus argumentos ya que los sectores están determinados por los ejes coordenados. Pero cuando el parámetro *b* es complejo es necesaria la construcción de las curvas $\Gamma_{\mathcal{K}_b}$, $\Gamma'_{\mathcal{K}_b}$ y para ello usaremos el algoritmo B.2.3. La aproximación a la dimensión Hausdorff se obtiene resolviendo la ecuación

$$\lambda((\boldsymbol{M'T})^{\alpha}) = 1,$$

la cual hacemos por el método de la potencia normalizado, véase apéndice A. Para mejorar la aproximación, hacemos un refinamiento a la partición y los y_{ij} pasan a ser los puntos muestra y obtenemos la matriz $P'T_2$, véase figura 3.3.

De manera general, si tomamos una partición uniforme y escogemos los puntos muestra $\{x_{4^{n-1}}\}$ ordenados de acuerdo a su argumento externo, la matriz de transición preliminar $P'T_n = [y_{ij}]$ se construye como sigue: Los y_{ij} están localizados de tal forma que el índice *i* indica que el punto está en la partición P_i y el indice *j* indica que es preimagen de x_j para toda $i, j = 1, ..., 4^{n-1}$.

 $\mathbf{48}$

La matriz de transición general es $M'T_n = [\hat{y}_{ij}]$ y es obtenida calculando $|Q'_b(y_{ij})|^{-1}$. Observe que por cada x_j , tenemos que si su preimagen está en el bloque P_m entonces las otras preimágenes están en $P_{4^{n-2}+m}, P_{2(4^{n-2})+m}, P_{3(4^{n-2})+m}$ con $m = 1, ..., 4^{n-2}$. Esto significa que $P_m \subset S_0, P_{4^{n-2}+m} \subset S_1, P_{2(4^{n-2})+m} \subset S_2$ y $P_{3(4^{n-2})+m} \subset S_3$ para $m = 1, ..., 4^{n-2}$. Por construcción, una preimagen de x_j está siempre en la región S_0 , otra en la región S_1 , otra en la región S_2 y otra en la región S_3 .

Debido a que la dimensión de la matriz crece exponencialmente rápido, la memoria física de una computadora convencional es insuficiente para calcular el radio espectral para refinamientos grandes (> 6). Debido a esto es necesario hacer un arreglo de la matriz $M'T_n$ que permita decrecer su dimensión y al mismo tiempo obtener el radio espectral. En la matriz $M'T_n$ eliminamos las posiciones con zeros y esta matriz de $4^n \times 4^n$ se convierte en una matriz de $4^n \times 4$, cuyas entradas son diferente de cero, ver matriz 3.1.

$$\boldsymbol{M'T'_{n}} = \begin{pmatrix} \hat{y}_{11} & \hat{y}_{12} & \hat{y}_{13} & \hat{y}_{14} \\ \hat{y}_{25} & \hat{y}_{26} & \hat{y}_{27} & \hat{y}_{28} \\ \hat{y}_{39} & \hat{y}_{310} & \hat{y}_{311} & \hat{y}_{312} \\ \hat{y}_{413} & \hat{y}_{414} & \hat{y}_{415} & \hat{y}_{416} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hat{y}_{4^{n-1}4^{n}-3} & \hat{y}_{4^{n-1}4^{n}-2} & \hat{y}_{4^{n-1}4^{n}-1} & \hat{y}_{4^{n-1}4^{n}} \\ \hat{y}_{(4^{n-1}+1)1} & \hat{y}_{(4^{n-1}+1)2} & \hat{y}_{(4^{n-1}+1)3} & \hat{y}_{(4^{n-1}+1)4} \\ \hat{y}_{(4^{n-1}+2)5} & \hat{y}_{(4^{n-1}+2)6} & \hat{y}_{(4^{n-1}+2)7} & \hat{y}_{(4^{n-1}+3)12} \\ \hat{y}_{(4^{n-1}+3)9} & \hat{y}_{(4^{n-1}+4)14} & \hat{y}_{(4^{n-1}+4)15} & \hat{y}_{(4^{n-1}+4)16} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{y}_{2(4^{n-1})4^{n-3}} & \hat{y}_{2(4^{n-1})4^{n-2}} & \hat{y}_{2(4^{n-1})4^{n+1}} & \hat{y}_{2(4^{n-1})4^{n}} \\ \hat{y}_{(2(4^{n-1})+2)5} & \hat{y}_{(2(4^{n-1})+2)6} & \hat{y}_{(2(4^{n-1})+3)11} & \hat{y}_{(2(4^{n-1})+3)12} \\ \hat{y}_{(2(4^{n-1})+3)9} & \hat{y}_{(2(4^{n-1})+3)10} & \hat{y}_{(2(4^{n-1})+3)11} & \hat{y}_{(2(4^{n-1})+3)12} \\ \hat{y}_{(2(4^{n-1})+4)13} & \hat{y}_{(2(4^{n-1})+4)14} & \hat{y}_{(2(4^{n-1})+4)15} & \hat{y}_{(2(4^{n-1})+4)16} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{y}_{3(4^{n-1})4^{n}-3} & \hat{y}_{3(4^{n-1})4^{n}-2} & \hat{y}_{3(4^{n-1})4^{n}-1} & \hat{y}_{3(4^{n-1})4^{n}} \\ \hat{y}_{(3(4^{n-1})+2)5} & \hat{y}_{(3(4^{n-1})+2)6} & \hat{y}_{(3(4^{n-1})+3)11} & \hat{y}_{(3(4^{n-1})+3)12} \\ \hat{y}_{(3(4^{n-1})+4)13} & \hat{y}_{(3(4^{n-1})+3)10} & \hat{y}_{(3(4^{n-1})+3)11} & \hat{y}_{(3(4^{n-1})+3)12} \\ \hat{y}_{(3(4^{n-1})+4)13} & \hat{y}_{(3(4^{n-1})+3)10} & \hat{y}_{(3(4^{n-1})+4)15} & \hat{y}_{(3(4^{n-1})+4)16} \\ \vdots & \vdots & \vdots & \vdots \\ \hat{y}_{4^{n}4^{n}-3} & \hat{y}_{4^{n}4^{n}-2} & \hat{y}_{4^{n}4^{n}-1} & \hat{y}_{4^{n}4^{n}} \end{pmatrix} \end{pmatrix}$$

Sea
$$\mathcal{H} \in \mathcal{M}_{4^n \times 4}, \ \mathcal{X} \in \mathcal{M}_{4^n \times 1}$$
 y definimos $G = H * X \in \mathcal{M}_{4^n \times 1}$ como:
 $g_{i1} = a_{i1}x_{4i-3} + a_{i2}x_{4i-2} + a_{i3}x_{4i-1} + a_{i4}x_{4i}$
 $g_{(4^{n-1}+i)1} = a_{(4^{n-1}+i)1}x_{4i-3} + a_{(4^{n-1}+i)2}x_{4i-2} + a_{(4^{n-1}+i)3}x_{4i-1} + a_{(4^{n-1}+i)4}x_{4i}$
 $g_{2(4^{n-1}+i)1} = a_{2(4^{n-1}+i)1}x_{4i-3} + a_{2(4^{n-1}+i)2}x_{4i-2} + a_{2(4^{n-1}+i)3}x_{4i-1} + a_{2(4^{n-1}+i)4}x_{4i}$
 $g_{3(4^{n-1}+i)1} = a_{3(4^{n-1}+i)1}x_{4i-3} + a_{3(4^{n-1}+i)2}x_{4i-2} + a_{3(4^{n-1}+i)3}x_{4i-1} + a_{3(4^{n-1}+i)4}x_{4i}$

	$a_{11} \cdot x_1$	$a_{12} \cdot x_2$	$a_{13} \cdot x_3$	$a_{14} \cdot x_4$
	$a_{21} \cdot x_5$	$a_{22} \cdot x_6$	$a_{23} \cdot x_7$	$a_{24} \cdot x_8$
	$a_{31} \cdot x_9$	$a_{32} \cdot x_{10}$	$a_{33} \cdot x_{11}$	$a_{34} \cdot x_{12}$
	$a_{41} \cdot x_{13}$	$a_{42} \cdot x_{14}$	$a_{43} \cdot x_{15}$	$a_{44} \cdot x_{16}$
		÷	÷	÷
	$a_{4^{n-1}1} \cdot x_{4^n-3}$	$a_{4^{n-1}2}\cdot x_{4^n-2}$	$a_{4^{n-1}3} \cdot x_{4^n-1}$	$a_{4^{n-1}4}\cdot x_{4^n}$
	$a_{(4^{n-1}+1)1} \cdot x_1$	$a_{(4^{n-1}+1)2} \cdot x_2$	$a_{(4^{n-1}+1)3} \cdot x_3$	$a_{(4^{n-1}+1)4} \cdot x_4$
	$a_{(4^{n-1}+2)1} \cdot x_5$	$a_{(4^{n-1}+2)2} \cdot x_6$	$a_{(4^{n-1}+2)3} \cdot x_7$	$a_{(4^{n-1}+2)4} \cdot x_8$
	$a_{(4^{n-1}+3)1}\cdot x_9$	$a_{(4^{n-1}+3)2} \cdot x_{10}$	$a_{(4^{n-1}+3)3} \cdot x_{11}$	$a_{(4^{n-1}+3)4} \cdot x_{12}$
	$a_{(4^{n-1}+4)1} \cdot x_{13}$	$a_{(4^{n-1}+4)2} \cdot x_{14}$	$a_{(4^{n-1}+4)3} \cdot x_{15}$	$a_{(4^{n-1}+4)4} \cdot x_{16}$
	:	÷	÷	÷
$\mathcal{U}_{*}\mathcal{X} =$	$a_{2(4^{n-1})1} \cdot x_{4^n-3}$	$a_{2(4^{n-1})2} \cdot x_{4^n-2}$	$a_{2(4^{n-1})3} \cdot x_{4^n-1}$	$a_{2(4^{n-1})4} \cdot x_{4^n}$
n + n =	$a_{(2(4^{n-1})+1)1} \cdot x_1$	$a_{(2(4^{n-1})+1)2} \cdot x_2$	$a_{(2(4^{n-1})+1)3} \cdot x_3$	$a_{(2(4^{n-1})+1)4} \cdot x_4$
	$a_{(2(4^{n-1})+2)1} \cdot x_5$	$a_{(2(4^{n-1})+2)2} \cdot x_6$	$a_{(2(4^{n-1})+2)3} \cdot x_7$	$a_{(2(4^{n-1})+2)4} \cdot x_8$
	$a_{(2(4^{n-1})+3)1} \cdot x_9$	$a_{(2(4^{n-1})+3)2} \cdot x_{10}$	$a_{(2(4^{n-1})+3)3} \cdot x_{11}$	$a_{(2(4^{n-1})+3)4} \cdot x_{12}$
	$a_{(2(4^{n-1})+4)1} \cdot x_{13}$	$a_{(2(4^{n-1})+4)2} \cdot x_{14}$	$a_{(2(4^{n-1})+4)3} \cdot x_{15}$	$a_{(2(4^{n-1})+4)4} \cdot x_{16}$
	÷		÷	÷
	$a_{3(4^{n-1})1} \cdot x_{4^n-3}$	$a_{3(4^{n-1})2} \cdot x_{4^{n-2}}$	$a_{3(4^{n-1})3} \cdot x_{4^n-1}$	$a_{3(4^{n-1})4}\cdot x_{4^n}$
	$a_{(3(4^{n-1})+1)1} \cdot x_1$	$a_{(3(4^{n-1})+1)2} \cdot x_2$	$a_{(3(4^{n-1})+1)3} \cdot x_3$	$a_{(3(4^{n-1})+1)4} \cdot x_4$
	$a_{(3(4^{n-1})+2)1} \cdot x_5$	$a_{(3(4^{n-1})+2)2} \cdot x_6$	$a_{(3(4^{n-1})+2)3} \cdot x_7$	$a_{(3(4^{n-1})+2)4} \cdot x_8$
	$a_{(3(4^{n-1})+3)1} \cdot x_9$	$a_{(3(4^{n-1})+3)1} \cdot x_{10}$	$a_{(3(4^{n-1})+3)3} \cdot x_{11}$	$a_{(3(4^{n-1})+3)4} \cdot x_{12}$
	$a_{(3(4^{n-1})+4)1} \cdot x_{13}$	$a_{(3(4^{n-1})+4)2} \cdot x_{14}$	$a_{(3(4^{n-1})+4)3} \cdot x_{15}$	$a_{(3(4^{n-1})+4)4} \cdot x_{16}$
	:			÷
	$ \qquad \qquad a_{4^{n_1}} \cdot x_{4^n - 3} $	$a_{4^n2} \cdot x_{4^n-2}$	$a_{4^n3} \cdot x_{4^n-1}$	$a_{4^n4} \cdot x_{4^n}$
	•	•		

para $i = 1, ..., 4^{n-1}$. Explícitamente de acuerdo con la definición del producto * se tiene que:

Directamente de la definición, tenemos el siguiente resultado.

Proposición 3.3.1. Dado $n \in \mathbb{N}$, sea $M'T_n$ la matriz asociada en el refinamiento n-1 y $M'T'_n$ definida en 3.1. Si $\mathcal{X} \in \mathcal{M}_{4^n \times 1}$, entonces $M'T_n \mathcal{X} = M'T'_n * \mathcal{X}$.

En resumen, aplicando el método de la potencia normalizado a las matrices $M'T_n$ y $M'T'_n$, tenemos el siguiente resultado.

Teorema 3.3.2. El radio espectral de la matriz $M'T_n$ aproximado con el método de la potencia normalizado puede ser aproximar usando la matriz $M'T'_n$ con el producto *.

3.4. Resultados

50

Al igual que en la familia cuadrática, la implementación del algoritmo fue hecha en MATLAB. En esta ocasión, comenzamos trabajando con parámetros reales en la familia cuártica, ver la tabla 3.1. Usando la construcción de la espina dorsal, calculamos la dimensión Hausdorff de parámetros en una recta que conecta el cero con el punto 1.2+1.0912i, ver tabla 3.2. Los resultados se presentan de manera gráfica en la figura 3.4. Debido a la dimensión de la matriz de transición, la implementación es limitada a 15 refinamientos. Es importante resaltar que la manipulación numérica de los puntos fijos es complicada para esta familia, además de que la matriz se complica mucho para la obtención del radio espectral.

Figura 3.4: Parámetros versus dimensión en la familia $Q_b = z^4 + bz^2$.

	b	Dimensión	b	Dimensión	b	Dimensión
	-2	1.268354	-1.25	1.081349	-0.45	1.009429
X	-1.95	1.266641	-1.2	1.073270	-0.4	1.007401
5	-1.9	1.274945	-1.15	1.065820	-0.35	1.005634
	-1.85	1.340410	-1.1	1.058948	-0.3	1.004118
	-1.80	1.278415	-1.0	1.052608	-0.25	1.002847
	-1.75	1.245744	-0.95	1.046761	-0.2	1.001815
	-1.70	1.219915	-0.9	1.041372	-0.15	1.001018
	-1.65	1.198135	-0.85	1.036411	-0.1	1.000452
	-1.60	1.179190	-0.8	1.031850	-0.05	1.000113
	-1.55	1.162402	-0.75	1.027666	0	1.000000
	-1.50	1.147343	-0.7	1.023837		
	-1.45	1.121336	-0.65	1.020344		
	-1.40	1.110018	-0.6	1.017171		
	-1.35	1.099645	-0.55	1.014303		
	-1.3	1.090117	-0.5	$1.01\overline{1726}$		

Cuadro 3.1: Dimensión Hausdorff para $b \in \mathbb{R}$.

b	Dimensión	b	Dimensión
-1.2000 + 1.0912i	1.317592	-0.5500 + 0.5001i	1.030870
-1.1500 + 1.0457i	1.311109	-0.5000 + 0.4547i	1.023955
-1.1000 + 1.0003i	1.286124	-0.4500 + 0.4092i	1.017872
-1.0500 + 0.9548i	1.258856	-0.4000 + 0.3637i	1.013083
-1.0000 + 0.9093i	1.234417	-0.3500 + 0.3183i	1.011240
-0.9500 + 0.8639i	1.212428	-0.3000 + 0.2728i	1.008329
-0.9000 + 0.8184i	1.116426	-0.2500 + 0.2273i	1.001919
-0.8500 + 0.7729i	1.097202	-0.2000 + 0.1819i	1.001430
-0.8000 + 0.7275i	1.084459	-0.1500 + 0.1364i	1.000724
-0.7500 + 0.6820i	1.081121	-0.1000 + 0.0909i	1.000111
-0.7000 + 0.6365i	1.068798	-0.0500 + 0.0455i	1.000021
-0.6500 + 0.5911i	1.055274	0.0000 + 0.0000i	1.000000
-0.6000 + 0.5456i	1.038363		Ŋ,

Cuadro 3.2: Dimensión Hausdorff para $b\in\mathbb{C}.$

3.5. Conclusiones

t abas El algoritmo del valor propio propuesto por McMullen fue implementado en MAT-LAB de manera eficiente para la familia cuadrática f_c y para una familia de polinomios cuárticos obtenida por la composición de dos polinomios cuadráticos. En particular, esta implementación permitió observar numéricamente las oscilaciones que presenta la dimensión Hausdorff en la familia cuadrática real a la derecha de

1/4

La implementación del algoritmo en el caso de la familia de polinomios cuárticos resultó ser mas compleja debido a que la dimensión de la matriz de transición crece mucho mas que la matriz de transición en el caso cuadrático. Además, las expresiones de los puntos fijos hace que la manipulación numérica sea más complicada a la hora de encontrar el punto fijo repulsor con ángulo externo cero, lo cual es fundamental para encontrar los puntos muestras en cada refinamiento. En este caso se logró implementar el algoritmo no para el caso real y para los parámetros c que pertenecen a la cardiode principal de la familia cuártica. Ya que existe una conjugación entre los parámetros del lugar de conexidad es suficiente calcular la dimensión Hausdorff en un sector del espacio de parámetros.

CON Parán. Harter Antronoma de Tabasco.

Bibliografía

- [AL] A. Avila M. Lyubich. Hausdorff Dimension and Conformal Measures of Feigenbaum Julia Sets. Journal of the mathematical Society. 21 (2008), 305–363 S 0894-0347(07)00583-8
- [Ba] M. F. Barnsley. Fractals Everywhere. Morgan Kaufmann, (1993).
- [B] A. Beardon. Iteration of Rational Functions. Springer Verlag, New York, (1991).
- [BD] B. Branner y A. Douady. Surgery on complex polynomials. Proc. of the Symposium on Dynamical Systems, Mexico 1986. Lecture Notes in Math. 1345 (1986), 11-72.
- [BC] X. Buff y A. Cheritat. Quadratic Julia sets with positive area. Proceeding of the International Congress of Mathematicians. Hyderabad, India (2010).
- [BZ] O. Bodart and M. Zinsmeister. Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques. Fund. Math. 151 (1996), 121–137.
- [Br] A.D. Brjuno. Convergence of transformations of differential equations to normal forms. Dokl. Akad. Nauk USSR. 165 (1965), 987-989.
- [CG] L. Carleson y T. Gamelin. Complex Dynamics. Springer Verlag, New York, (1993).
- [CK] M. Capinski y P. E. Kopp. Measure, Integral and Probability. Springer Verlag, London, 1999.
- [D2] A. Douady. Does a Julia set depend continuously on the Polynomial. American Mathematical Society 91-138, 49(1994).
- [D] A. Douady. Algorithms for Computing Angles in the Mandelbrot Set. 1984
- [D1] A. Douady. Systèmes Dynamiques Holomorphes. Séminaire Bourbaki, 35é année. 599, Astérisque 105-106 (1982), 39-63.
- [DH] A. Douady y J. Hubbard. Étude dynamique des polynômes complexes. Publication Mathématiques d'Orsay. 84-02 (1984); 85-04, (1985).

- [DH1] A. Douady y J. Hubbard. On the dynamics of polynomial-like mappings.
 Ann. Sci. Éc. Norm. Sup. 18 (1985), 287-344.
- [DSZ] A. Douady, P. Sentenac, and M. Zinsmeister. Implosion parabolique et dimension de Hausdorff. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 765-772.
- [F] K.J. Falconer. Fractal Geometry, John Wiley & Sons, (2003).
- [G1] F.R. Gantmacher. The Theory of Matrices, volume II. Chelsea, (1959).
- [G] L. Garnett, A computer algorithm for determining the Hausdorff dimension of certain fractals, Math. Comp. 51 (1988), 291–300.
- [H] J.H. Hubbard. Local connectivity of julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz. Topological Methods in Modern Mathematics. (1993). pp 467-511.
- [HU] J.E. Hutchinson. Fractals and Self Similarity, The Australian National University, (Octubre 16, 1980).
- [HW] G.H. Hardy y E.M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, New York, (1979).
- [HZ] G. Havard and M. Zinsmeister. Thermodynamic formalism and variations of the Hausdorff dimension of quadratic Julia sets. Comm. Math. Phys. 210(2000), 225-247.
- [JR] J. Rivera. On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets. Fundamenta Mathematicae. 170 (2001).
- [KL] J. Kahn y M. Lyubich. A priori bounds for some infinitely renormalizable quadratics: III. Molecules. In Çomplex Dynamics: Families and Friends". Proceeding of the conference dedicated to Hubbard's 60th birthday (ed: D. Schleicher). Peters, AK (2009).
- [L2] M. Lyubich. Dynamics of quadratic polynomials, I-II. Acta Mathematica. 178, (1997), 185-297.
- [LeS] G. Levin G. Swiatek. Measure of the Julia set of the Feigenbaum map with high criticality(2009)
- [LJ] L. Jaksztas. The Hausdorff Dimension is Convex on the Left Side of 1/4. Proceedings of the Edinburgh Mathematical Society (2017) 60, 911–936.
- [LJ1] L. Jaksztas. On the Left Side Derivate of the Hausdorff dimension of the Julia Sets for $z^2 + c$ at c = -3/4. Israel Journal of Mathematics. 199 (2014), 1–43

- [LS] G. Levin and G. Swiatek. Hausdorff dimension of Julia sets of Feigenbaum type, (2005).
- [LeZ] G. Levin and M. Zinsmeister. On the Hausdorff dimension of Julia sets of some real polynomials (2013).
- [M] P. Mattila. Geometry of Sets and Measures in Euclidean Space. Cambridge University Press, (1995).
- [M1] J. Milnor. Dynamics in one complex variable. Third edition. Annals of Math. Studies. 160, Princeton University Press, Princeton, NJ, (2006).
- [MB] L. Martínez G. Blé. Hausdorff dimension of Julia sets of quadratic polynomialsFractalsVol. 26, No. 03,(2018).
- [MH] J. E. Marsden y M. J. Hoffman Análisis Básico de Variable Compleja. Ed. Trillas (2008).
- [McM] C. McMullen. Complex Dynamics and Renormalization. Annals of Math. Studies. 135, Princeton University Press, Princeton, NJ, 1994.
- [McMI] C. McMullen. Hausdorff dimension and conformal dynamics III: Computation of dimension, (3 October, 1997).
- [McMII] C. McMullen. Hausdorff dimension and conformal dynamics II:Geometrically finite rational maps , (3 October, 1997).
- [MT] R. S. MacKay and C. Tresser, Boundary of topological chaos for bimodal maps of the interval, J. London Math. Soc., **2**(37),(1987), 164-189.
- [MiT] J. Milnor and C. Tresser. On entropy and monotonicity for real cubic maps, Commun. Math Phys., **209**, (2000), 123-178.
- [dMvS] W. de Melo and S. van Strien. One-dimensional dynamics, Springer, Berlin. (1993).
- [P] C.L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation. Acta Math. 177 (1996), no. 2, 163–224. (Reviewer: Hartje Kriete) 58F23 (30D05)
- [R] A. Radulescu. The connected isentropes conjecture in a space of quartic polynomials. Discrete Contin. Dyn. Syst. **19** (1),(2007), 139–175.
- [Ro] M. Romero (2015). Componentes hiperbólicas principales en una familia de polinomios cuárticos. Universidad Juárez Autónoma de Tabasco, Cunduacán Tabasco.
- [Ru] Repellers for real analytic maps. Ergod. Th. Dynam. Sys. 2 (1982), 99-107.
- [Sh] S. Haas (2203) The Hausdorff Dimension of Julia Sets of Polynomials of the form $z^d + c$. Department of Mathematics Harvey Mudd College.

- M. Shishikura. The Hausdorff dimension of the boundary of the Mandelbrot [Sh1]set and Julia sets. Annals of Mathematics. 147, (1998), 225-267.
- [S2]D. Sullivan. Conformal dynamical systems. Geometric dynamics. Springer-Verlag Lecture Notes 1007, (1983), 725-752.
- Tan, Lei; Yin, Yongcheng Local connectivity of the Julia set for geometrically [TY]finite rational maps. Sci. China Ser. A 39 (1996), no. 1, 39–47.
- [Y]J.-C. Yoccoz. Linearisation des germes de difeomorphismes holomorphes de (C,0). C.R. Acad. Sci. Paris. 306, (1988), 55-58.
- Yousef Saad. Numerical Methods For Large Eigenvalue Problems. Second [YS] Edition (2011). Copyright c (2011) by the Society for Industrial and Applied Mathematics.
- M. Zinsmeister. Fleur de Leau-Fatou et dimension de Hausdorff, (1998). [Zin]
- [Zu] Anna Zdunik. Parabolic orbifolds and the dimension of the maximal measure for rational maps, (1990).

57

Apéndice A

Método de la potencia

La resolución de sistemas por métodos iterativos, el estudio de la dinámica de una población y en general los problemas donde se obtiene la solución mediante una formulación recurrente del tipo

dado
$$x^0$$
, $x^{k+1} = A * x^k$ con $k \in \mathbb{N}$ y $A \in \mathbb{R}^{n \times n}$

requieren conocer cual es el valor propio de mayor valor absoluto, lo que se denomina valor propio dominante.

Aunque la manera ortodoxa de obtener los valores característicos de una matriz $A \in \mathbb{R}^{n \times n}$ es obtener raíces de su polinomio característico, el método de las potencias ofrece una opción para obtener el mayor y el menor valor característico de $A \in \mathbb{R}^{n \times n}$ sin la necesidad de disponer de la ecuación característica.

El método de la potencia es un método iterativo de aproximaciones sucesiva, por lo cual, además de la matriz $A \in \mathbb{R}^{n \times n}$ deberá conocerse una tolerancia establecida y también un cierto número de iteraciones. Los resultados de esta sección se pueden consultar en [YS].

Definición A.0.1. El valor propio dominante es el valor propio de mayor módulo, es decir, si de tabasc

$$|\lambda_1| > |\lambda_2| > \cdots |\lambda_n|,$$

entonces λ_1 es el valor propio dominante.

Dado un vector

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

diremos que la componente v_i es una componente dominante si

$$|v_j| = \parallel v \parallel_{\infty} = \max_j |v_j|.$$

Observa que un vector puede tener más de una componente dominante, pero todas las componentes dominantes deben tener el mismo módulo. Un vector está normalizado si sus componentes dominantes vale
n $\pm 1.$ Si $v_{\rm dom}$ es una componente dominante de v podemos obtener un vector normalizado \hat{v} en la dirección de vdonde

$$\widehat{v} = \frac{1}{v_{\text{dom}}} \cdot v.$$

Dada una matriz A de dimensiones $n \times n$, el objetivo es calcular el valor propio dominante y un vector propio asociado.

Supondremos que la matriz A tiene valores propios distintos

$$|\lambda_1| > |\lambda_2| > \cdots |\lambda_n|,$$

con vectores propios asociados

$$|v_1| > |v_2| > \cdots |v_n|.$$

También suponemos que tenemos un vector inicial x^0 que se puede escribir como combinación lineal de $v_1, v_2 \dots v_n$

Método

$$\begin{cases} y^{(j-1)} = \frac{1}{c_{j-1}} x^{(j-1)} \text{ (Normalizado de) } x^{(j-1)}, \\ c_j = \text{componente dominante de } x^{(j)}, \\ x^{(j)} = A y^{j-1}. \end{cases}$$

La convergencia de este método está garantizada por el siguiente resultado cuya demostración puede ser consultada en [YS].

Teorema A.0.2. Suponga que existe un único valor propio λ_1 dominante de una matriz A. Entonces, la sucesión de vectores x^j generados por el método de la potencia converge a un vector propio asociado a λ_1 y c_i converge a λ_1 .

En el Cuadro A.1 podemos ver como se va obteniendo la sucesión de vectores y la sucesión de c_i .

j	$y^{(j-1)}$	$x^{(j)}$	$\lambda^{(j)}$
1	$y^{(0)} = \frac{1}{c_0} x^{(0)}$	$x^{(1)} = Ay^{(0)}$	c_1
2	$y^{(1)} = \frac{1}{c_1} x^{(1)}$	$x^{(2)} = Ay^{(1)}$	c_2
3	$y^{(2)} = \frac{1}{c_2} x^{(2)}$	$x^{(3)} = Ay^{(2)}$	c_3
4	$y^{(3)} = \frac{1}{c_3} x^{(3)}$	$x^{(4)} = Ay^{(3)}$	c_4
÷	:	:	÷
j	$y^{(j-1)} = \frac{1}{c_{j-1}} x^{(j-1)}$	$x^{(j)} = Ay^{(j-1)}$	c_j

Cuadro A.1: Sucesión de vectores y de c_i .

Si las hipótesis citadas son ciertas, entonces se cumple:

1.- La sucesión de escalares c_j tiende al valor propio dominante, es decir,

$$\{c_j\}_{j=1}^\infty \to \lambda_1.$$

2.- La sucesión de vectores

$$\{x^j\}_{j=1}^\infty \to x,$$

te Ar propio . Hund Hundreet Automonda de fabresco. donde x es un vector propio normalizado asociado
a $\lambda_1.$

Apéndice B

Algoritmos

B.1. Algoritmos para la dimensión Hausdorff de la familia $f_c(z) = z^2 + c$

Sea $\{x_n\}_{n=1}^N$ una sucesión de puntos en Γ_c . Construimos segmentos de rectas que conectan a $x_n = a_n + ib_n$ con $x_{n+1} = a_{n+1} + ib_{n+1}$. Las ecuaciones de estas rectas son $y_{l_n} = m_n(x - a_n) + b_n$, donde la pendiente es $m_n = \frac{b_n - b_{n+1}}{a_n - a_{n+1}}$. Asignamos una dirección a cada recta como sigue:

Algoritmo B.1.1 (Para determinar la dirección de cada segmento de recta). Dado $x_n = a_n + ib_n$ y $x_{n+1} = a_{n+1} + ib_{n+1}$ puntos en Γ_c , este algoritmo asigna una dirección a los segmentos de recta que conectan a x_n con x_{n+1} .

• Si $a_n > a_{n+1}$ $Dir(l_n) \leftarrow 1$ de lo contrario $Dir(l_n) \leftarrow 0$ fin de si.

En el siguiente algoritmo, si a = 1, entonces y_1 tiene argumento externo en (0, 1/2)y si a = 0, entonces y_1 tiene argumento externo en (1/2, 1).

Algoritmo B.1.2 (Para determinar si un punto y_1 está arriba o abajo de Γ_c). . Dado un punto y_1 este algoritmo permite determinar el valor de a.

- Encontrar el conjunto de segmentos de rectas $\{l_j\}_{j=1}^k$ que satisfacen $Re(y_1) \in [Re(x_j), Re(x_{j+1})].$
- for j = 1 : k $y_j \leftarrow m_j(Re(y_1) - Re(x_j)) + Im(x_j)$ end
- $\{x_p\}_{p=1}^{k+1} \leftarrow \{y_j\}_{p=1}^k \cup Im(y_1)$, ordenados en orden descendente.

• $l_p \leftarrow l_j$ correspondiente.

Calcule $Dir(l_p)$ Con el algoritmo B.1.1 con datos de entrada $x_p = Re(x_p) +$ $iIm(x_p), x_{p+1} = Re(x_{p+1}) + iIm(x_{p+1})$

- $Max \leftarrow Max\{x_p : p = 1, ..., k+1\}.$
- $Min \leftarrow Min\{x_p : p = 1, ..., k+1\}.$

```
• Si Im(y_1) > Max
       a = 1
  de lo contrario si Dm(y_1) < Min
       a = 0
  de lo contrario
       Para \ p = 1:k
           si Im(y_1) \in |x_p, x|
                  si Dir(l_{p+1})
                  a = 1
                  de lo contrario
                            o
T
T
T
S
J
O
T
S
J
                  a = 0
                   fin
            fin
       fin
  fin
```

Algoritmo B.1.3 (Algoritmo de la Matriz de transición). Sea $c \in \mathbb{C}$ un parámetro hiperbólico, y $n \in \mathbb{N}$, este algoritmo calcula la matriz de transición MT'_n .

- $\{u_1, u_2\} \leftarrow f^{-1}(-\beta_c)$
- Calcule a usando el algoritmo B.1.2 con datos de entrada u_1

```
• si \ a = 1
         samplepoints(1) \leftarrow u_1
         samplepoints(2) \leftarrow u_2
  else
         samplepoints(1) \leftarrow u_2
         samplepoints(2) \leftarrow u_1
```

```
end
```

AC TODOSCC • para k = 3:npara $i = 1: 2^{k-2}$ $preimage \leftarrow f^{-1}(samplepoints(i))$ Calcule a con el algoritmo A.1 con datos de entrada preimage(1) $si \ a = 1$

Algoritmo B.1.4 (De la potencia normalizado). Dada una matriz $A \in \mathcal{M}_{n \times n}$, $m \in \mathbb{N}$ el numero de iteracione maximas y $\delta \in \mathbb{R}$ una tolerancia, obtenemos el radio espectral R de la matriz A.

- Genera un vector aleatorio $\pmb{X} \in \mathbb{R}^n$ con $\pmb{X} \neq 0$
- Determine x_i tal que $|x_i| > |x_j|, i \neq j$

•
$$Y \leftarrow \frac{1}{x_i} X$$

- $Xold \leftarrow AY$
- Determine $Xold_i$ tal que $|Xold_i| > |Xold_j|, i \neq j$ $Xnew \leftarrow \frac{1}{Xold_i} Xold$
- $k \leftarrow 1$
- Mientras $|Xnew Xold| > \delta$ y k < m, hacer $Xold \leftarrow Xnew$ $Xnew \leftarrow AXnew$ Determine $Xnew_i$ tal que $|Xnew_i| > |Xnew_i|, i \neq j$

Algoritmo B.1.5. (Del cáculo de la dimensión Hausdorff) Dado un parámetro $c \in \mathbb{R}$ con J_c hiperbólico, $n, i \in \mathbb{N}$, $dim_{H_{min}}, dim_{H_{max}}, tol, \delta \in \mathbb{R}$, este algoritmo nos permite calcular la dimensión Hausdorff de J_c , dim_H .

- Obtenga MT'_n
- $MP_{ij} \leftarrow ((MT'_n)_{ij})^{-dim_{H_{min}}}$
- Calcule r_1 con el algoritmo B.1.4 con datos de entrada MP, k, δ
- $r_1 \leftarrow r_1 1$
- $dim_{H_{max}} \leftarrow dim_{H_{min}} + h$
- $MP_{ij} \leftarrow ((MT'_n)_{ij})^{-dim_{Hmax}}$
- Calcule r_2 con el algoritmo B.1.4 con datos de entrada $\boldsymbol{MP}, \, k, \, \delta$
- $\bullet \ r_2 \leftarrow r_2 1$
- $e \leftarrow \frac{r_2 r_1}{h}$
- $dim_H \leftarrow dim_{H_{min}} \left(\frac{r_1}{e}\right)$
- $dif \leftarrow |dim_{H_{min}} dim_H|$
- $i \leftarrow 1$
- te tabasc • Mientras $dif \ge tol \ y \ i < m$, hacer $dim_{H_{min}} \leftarrow dim_{H}$ $MP_{ij} \leftarrow ((MT'_n)_{ij})^{dim_{H_{min}}}$ Calcule r_1 con el algoritmo B.1.4 con datos de entrada MP, k, δ $r_1 \leftarrow r_1 - 1$ $dim_{H_{max}} \leftarrow dim_{H_{min}} + h$ $MP_{ij} \leftarrow ((MT'_n)_{ij})^{dim_{H_{max}}}$ Calcule r_1 con el algoritmo B.1.4 con datos de entrada **MP**, k, δ

$$\begin{array}{c} r_{2} \leftarrow r_{2} - 1\\ e \leftarrow \frac{r_{2} - r_{1}}{h}\\ dim_{H} \leftarrow dim_{H_{min}} - \left(\frac{r_{1}}{e}\right)\\ dif \leftarrow |dim_{H_{min}} - dim_{H}|\\ i \leftarrow i + 1 \end{array}$$
fin de mientras

B.2. Algoritmos para la dimensión Hausdorff de la familia $Q_b(z) = z^4 + bz^2$

Sea $R_{\frac{1}{2}}$ el rayo que aterriza en $\beta_{b,1}$ y $R_{\frac{1}{4}}$ el rayo que aterriza en $\beta_{b,2}$. Sea $R'_{\frac{1}{2}} = R_{\frac{1}{2}} \cap \overline{D}_{\sqrt{8}}(0), R'_{\frac{1}{4}} = R_{\frac{1}{4}} \cap \overline{D}_{\sqrt{8}}(0), C_{\frac{1}{2}} = [-z_0, \alpha_b] \cup \Gamma_b^2 \cup R'_{\frac{1}{2}}$ y $C_{\frac{1}{4}} = [\alpha_b, Q_b^{-1}(z_0)] \cup (\Gamma'_b)^1 \cup R'_{\frac{1}{4}}$. Sea $x_{\frac{1}{2}} = \min\{Re(z) : z \in R'_{\frac{1}{2}}\}$ y $x_{\frac{1}{4}} = \min\{Re(z) : z \in R'_{\frac{1}{4}}\}$. Observe que $x_{\frac{1}{2}} < x_{\frac{1}{4}}$.

 Sea

у

$$F_{\frac{1}{4}} = \{ z \in \mathbb{C} : x_{\frac{1}{4}} < Re(z) \le 0 \}$$

$$F_{\frac{1}{2}\frac{1}{4}} = \{ z \in \mathbb{C} : x_{\frac{1}{2}} < Re(z) \le x_{\frac{1}{4}} \}.$$

Algoritmo B.2.1. Sea $z \in \mathbb{C}$ con Re(z) < 0. Algoritmo para determinar el intervalo en donde se encuentra el argumento externo de z.

• Si $z \in F_{\frac{1}{4}}$ Determine si z está arriba o abajo de $C_{\frac{1}{4}}$ con el algoritmo B.1.2. Si está arriba d = 0.De lo contrario Determine si z está arriba o abajo de $C_{\frac{1}{2}}$ con el algoritmo B.1.2. 1 abase Si está arriba d = 1.De lo contrario d=2.fin de si fin de si De lo contrario si $z \in F_{\frac{1}{2}}$ Determine si z está arriba o abajo de $C_{\frac{1}{2}}$ con el algoritmo B.1.2. Si está arriba d = 1.De lo contrario d = 2.

Para el algoritmo B.2.1 se tiene que: si d = 0 entonces z tiene argumento externo en $(0, \frac{1}{4})$; si $d \neq 1$ entonces z tiene argumento externo en $(\frac{1}{4}, \frac{1}{2})$; y si d = 2 entonces z tiene argumento externo en $(\frac{1}{2}, \frac{3}{4})$. Es importante hacer notar que si $z \in \{Q_b^{-1}(x)\},$ entonces $-z \in \{Q_b^{-1}(x)\}$. Es por esto que es suficiente saber el argumento externo de dos de las imágenes inversas de los puntos muestra x que no sean antípodas, para argu. i), entonce o en $(\frac{1}{4}, \frac{1}{2})$, ente **pritmo B.2.2.** Algorithe W_0 • $\{u_1, u_2, u_3, u_4\} \leftarrow Q_b^{-1}(\beta_{b,4}).$ • $h \leftarrow -1$ $\forall n = 1 : 4$ $\forall n' = u_m$ $\because 1$ $\forall 0$ $H = U_m$ $\therefore 1$ saber el argumento externo de las otras dos. Por ejemplo si z tiene argumento externo en $(0, \frac{1}{4})$, entonces -z tiene argumento externo en $(\frac{1}{2}, \frac{3}{4})$; y si z tiene argumento externo en $(\frac{1}{4}, \frac{1}{2})$, entonces -z tendrá argumento externo en $(\frac{3}{4}, 1)$.

Algoritmo B.2.2. Algoritmo para la construcción de la matriz de transición. Sea $b \in W_0$

- Calcule el valor de d_1 con el algoritmo B.2.1 con datos de entrada B(1)

```
• Si d_1 = 0
        puntosmuestra(1) \leftarrow B(1)
        puntosmuestra(2) \leftarrow B(2)
        puntosmuestra(3) \leftarrow -B(1)
        puntosmuestra(4) \longleftarrow -B(2)
  De lo contrario si d_1 = 1
        Calcule el valor de d_2 con el algoritmo B.2.1 con datos de entrada B(2)
                                                                        ľa
Noros CC
             Si d_2 = 0
                  puntosmuestra(1) \leftarrow B(2)
                  puntosmuestra(2) \leftarrow B(1)
                  puntosmuestra(3) \leftarrow -B(2)
                  puntosmuestra(4) \longleftarrow -B(1)
             De lo contrario si d_2 = 2
                  puntosmuestra(1) \longleftarrow -B(2)
                  puntosmuestra(2) \leftarrow B(1)
                  puntosmuestra(3) \leftarrow B(2)
                  puntosmuestra(4) \longleftarrow -B(1)
             fin de si
  fin de si
```

• Para
$$k = 3: n$$

Para $i = 1: 4^{k-2}$
preimagen $\leftarrow Q_b^{-1}(puntosmuestra(i))$
 $h \leftarrow -1$
Para $m = 1: 4$
Si $Re(preimagen(m)) < 0$
 $B(h) \leftarrow preimagen(m)$
 $h \leftarrow -h + 1$
fin de si
fin de para
Calcule di valor de d para $B(1)$
Si $d = 0$
 $T'(4i - 3) \leftarrow -B(1)$
 $T'(4i - 3) \leftarrow -B(2)$
 $T'(4i - 2) \leftarrow -B(2)$
 $T'(4i - 2) \leftarrow -B(2)$
 $T'(4i - 2) \leftarrow -B(1)$
 $T'(4i - 2) \leftarrow -B(2)$
 $T'(4i - 2) \leftarrow -B(1)$
 $T'(4i - 2) \leftarrow -B(2)$
 $T'(4i - 2) \leftarrow -$

• Para l = 1: longitud(puntosmuestra) $Eval(l) \longleftarrow |Q'_b(puntosmuestra(l))|$ fin de para Para q = 1: longitud(puntosmuestra)/8 $M'T'_n(g,1) \longleftarrow Eval(4g-3)$ $M'T'_n(g,2) \longleftarrow Eval(4g-2)$ $M'T'_n(g,3) \longleftarrow Eval(4g-1)$ $M'T'_n(g,4) \longleftarrow Eval(4g)$

fin de para

Algoritmo B.2.3. Dado un parámetro $b \in \mathcal{W}_0$ con \mathcal{J}_b hiperbólico, $n, m, k \in \mathbb{N}$, $dim_{H_{min}}, dim_{H_{max}} tol, \delta, h \in \mathbb{R}$, este algoritmo permite obtener la dimensión Hausdorff de \mathcal{J}_b , dim_H .

- Obtenga $M'T'_n$
- $MP_{ij} \leftarrow ((M'T'_n)_{ij})^{-dim_{H_{min}}}$
- Calcule r_1 con el algoritmo B.1.4 con datos de entrada MP, k, δ
- $r_1 \leftarrow r_1 1$
- $dim_{H_{max}} \leftarrow dim_{H_{min}} + h$
- $MP_{ij} \leftarrow ((M'T'_n)_{ij})^{-dim_{H_{max}}}$
- Calcule r_2 con el algoritmo B.1.4 con datos de entrada MP, k, δ
- $r_2 \leftarrow r_2 1$
- $e \leftarrow \frac{r_2 r_1}{h}$
- $dim_H \leftarrow dim_{H_{min}} \left(\frac{r_1}{\epsilon}\right)$
- $dif \leftarrow |dim_{H_{min}} dim_H|$
- $i \leftarrow 1$
- .4 con etc. • Mientras $dif \ge tol \ y \ i < m$, hacer $dim_{H_{min}} \leftarrow dim_{H}$ $MP_{ij} \leftarrow ((M'T'_n)_{ij})^{dim_{H_{min}}}$ $MP_{ij} \leftarrow ((M I_n)_{ij})$ Calcule r_1 con el algoritmo B.1.4 con datos de entrada MP, k, δ Calcule r_1 con $r_1 \leftarrow r_1 - 1$ $dim_{H_{max}} \leftarrow dim_{H_{min}} + h$ $MP_{ij} \leftarrow ((M'T'_n)_{ij})^{dim_{H_{max}}}$ Calcule r_1 con el algoritmo B.1.4 con datos de entrada MP, k, δ $r_1 \leftarrow r_2 - 1$ $dif \leftarrow |dim_{H_{min}} - dim_H|$ $i \leftarrow i + 1$

fin de mientras